Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Empirical Two Step Approximation for Characterizing Thermal Properties of Ultrathin Graphite Sheet
Corresponding Author(s) : Won Kweon Jang
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
The estimation method for unknown thermal properties of ultrathin graphite sheet is suggested in this work. Based on the well known thermal properties of a few materials, the estimation was done by two step approximation algorism. The experimental measurement for four materials of copper, aluminum, indium and graphite was performed at the restricted laboratory environment to get the mutual relation indicating special regularity between those materials. The estimated value of thermal conductivity for a graphite ultrathin thermal sheet was 646 W/m·K that was reasonable comparing to its functional capacity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Monier-Vinard, M.-N. Nguyen, N. Laraqi, V. Bissuel and O. Daniel Steady State Temperature Solution for Early Design of Annealed Pyrolytic Graphite Heat Spreader: Full Results, 15th IEEE ITHERM Conference, p. 945 (2016); https://doi.org/10.1109/ITHERM.2016.7517647.
- M. Smalc, G. Shives, G. Chen, S. Guggari, J. Norley and R.A. Reynolds III, Thermal Performance of Natural Graphite Heat Spreaders, Proceedings of IPACK 2005, 17-22 July (2005).
- C.-C. Lee, H.T. Hsu, M.C. Huang and H.H. Huang, Appl. Mech. Mater., 540, 126 (2014); https://doi.org/10.4028/www.scientific.net/AMM.540.126.
- G.A. Beck, A.A. Carter and J.F. Morris, Measurements of the Thermal Conductivity of Pyrolitic Graphite Substrates for use in SCT Modules, ATL-INDET-98-221 (1998).
- J.Y. Cho and W.K. Jang, Asian J. Chem., 30, 463 (2018); https://doi.org/10.14233/ajchem.2018.21123.
- M. Boutinguiza, F. Lusquiños, J. Pou, R. Soto, F. Quintero and R. Comesaña, Opt. Lasers Eng., 50, 727 (2012); https://doi.org/10.1016/j.optlaseng.2011.11.016.
- X. Zheng, L.W. Wang, R.Z. Wang, T.S. Ge and T.F. Ishugah, Int. J. Heat Mass Transfer, 68, 435 (2014); https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.075.
References
E. Monier-Vinard, M.-N. Nguyen, N. Laraqi, V. Bissuel and O. Daniel Steady State Temperature Solution for Early Design of Annealed Pyrolytic Graphite Heat Spreader: Full Results, 15th IEEE ITHERM Conference, p. 945 (2016); https://doi.org/10.1109/ITHERM.2016.7517647.
M. Smalc, G. Shives, G. Chen, S. Guggari, J. Norley and R.A. Reynolds III, Thermal Performance of Natural Graphite Heat Spreaders, Proceedings of IPACK 2005, 17-22 July (2005).
C.-C. Lee, H.T. Hsu, M.C. Huang and H.H. Huang, Appl. Mech. Mater., 540, 126 (2014); https://doi.org/10.4028/www.scientific.net/AMM.540.126.
G.A. Beck, A.A. Carter and J.F. Morris, Measurements of the Thermal Conductivity of Pyrolitic Graphite Substrates for use in SCT Modules, ATL-INDET-98-221 (1998).
J.Y. Cho and W.K. Jang, Asian J. Chem., 30, 463 (2018); https://doi.org/10.14233/ajchem.2018.21123.
M. Boutinguiza, F. Lusquiños, J. Pou, R. Soto, F. Quintero and R. Comesaña, Opt. Lasers Eng., 50, 727 (2012); https://doi.org/10.1016/j.optlaseng.2011.11.016.
X. Zheng, L.W. Wang, R.Z. Wang, T.S. Ge and T.F. Ishugah, Int. J. Heat Mass Transfer, 68, 435 (2014); https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.075.