Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantitative Structure Activity Relationship and Biological Activity Studies of 4-Methyl-2-(4-substituted phenyl)quinoline Derivatives
Corresponding Author(s) : P.K. Rahangdale
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
Quantitative structure activity relationship (QSAR) studies of some 4-methyl-2-(4-substituted phenyl)quinoline derivatives were carried out to determine their predicted biological activities. Numbers of descriptors were tested to adjudge a quantitative correlation between activity and structural features using training set and test set. Significant correlation was observed between activities and descriptors. The results were interpreted on the basis of linear regression analysis. Experimental antibacterial activities of the test set compounds were determined. The predicted biological activities generated by QSAR model were compared with the experimental antibacterial activities. The concurrence between the predicted and experimental biological activities validates the QSAR model. Thus, it can be concluded that the model under the present investigation can be applied for predicting the unknown biological activities of structurally similar molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Elguero and K.T. Inpotts, Comprehensive Heterocyclic Chemistry. Pergamon Press: Oxford, vol. 5, pp 167 (1984).
- T.D. Penning, J.J. Talley, S.R. Bertenshaw, J.S. Carter, P.W. Collins, S. Docter, M.J. Graneto, L.F. Lee, J.W. Malecha, J.M. Miyashiro, R.S. Rogers, D.J. Rogier, S.S. Yu, G.D. Anderson, E.G. Burton, J.N. Cogburn, S.A. Gregory, C.M. Koboldt, W.E. Perkins, K. Seibert, A.W. Veenhuizen, Y.Y. Zhang and P.C. Isakson, J. Med. Chem., 40, 1347 (1997); https://doi.org/10.1021/jm960803q.
- G. Menozzi, L. Mosti, P. Fossa, F. Mattioli and M. Ghia, J. Heterocycl. Chem., 34, 963 (1997); https://doi.org/10.1002/jhet.5570340339.
- R.D. Naik and K.R. Desai, Orient. J. Chem., 14, 161 (1998).
- M. Kidwai and N. Negi, Monatsh. Chem., 85, 128 (1997); https://doi.org/10.1007/BF00807642.
- O.A. El-Sayed and F.B. El-Bieh, Boll. Chim. Farm., 141, 461 (2002).
- P. Siminoff and R.R. Crenshaw, Antimicrob. Agents Chemother., 11, 571 (1977); https://doi.org/10.1128/AAC.11.3.571.
- R.G. Stein, J.H. Biel and T. Singh, J. Med. Chem., 13, 153 (1970); https://doi.org/10.1021/jm00295a049.
- A.A. Joshi, S.S. Narkhede and C.L. Viswanathan, Bioorg. Med. Chem. Lett., 15, 73 (2005); https://doi.org/10.1016/j.bmcl.2004.10.037.
- J.C. Craig and D.E. Pearson, J. Med. Chem., 14, 1221 (1971); https://doi.org/10.1021/jm00294a022.
- T. Suresh, R.N. Kumar, S. Magesh and P.S. Mohan, Indian J. Chem., 42B, 2133 (2003).
- T.R.N. Suresh Kumar, S. Magesh, P.S. Mohan, Indian J. Chem., 42B, 688 (2003).
- H.V. Patel, K.V. Vyas and P.S. Fernandes, Indian J. Chem., 29B, 836 (1990).
- A. Dlugosz and D. Dus, Farmaco, 51, 367 (1996).
- H. Skraup, Chem. Ber., 12, 2331 (1879); https://doi.org/10.1002/cber.187901202299.
- O. Doebner and W. Miller, Bericht, 16, 2464 (1883); https://doi.org/10.1002/cber.188301602176.
- P. Friedlaender, Chem. Ber., 15, 2572 (1882); https://doi.org/10.1002/cber.188201502219.
- N. Hall, Science, 32, 266 (1994); https://doi.org/10.1126/science.266.5182.32.
- S. Sharma, K. Anita, B. Shaik, I. Ahmad and V.K. Agrawal, J. Eng. Sci. Manage. Educ., 6, 153 (2013).
- B. Shaik, J. Singh and V.K. Agrawal, Med. Chem. Res., 21, 2097 (2012); https://doi.org/10.1007/s00044-011-9721-2.
- J. Singh, V.K. Agrawal and P.V. Khadikar, J. Indian Chem. Soc., 85, 517 (2008).
- V.K. Agrawal, J. Singh, S. Singh and P.V. Khadikar, Oxid. Commun., 31, 17 (2008).
- V.K. Agrawal, R. Sharma and P.V. Khadikar, Oxid. Commun., 26, 186 (2003).
- V.K. Agrawal, S. Sinha, S. Bano and P.V. Khadikar, Acta Microbiol. Immunol. Hung., 48, 17 (2001).
- V.K. Agrawal, R. Srivastava and P.V. Khadikar, Bioorg. Med. Chem., 9, 3287 (2001); https://doi.org/10.1016/S0968-0896(01)00241-3.
- V.K. Agrawal, R. Sharma and P.V. Khadikar, Bioorg. Med. Chem., 10, 1361 (2002); https://doi.org/10.1016/S0968-0896(01)00399-6.
- V.K. Agrawal, S. Sinha and P.V. Khadikar, Indian J. Chem., 39B, 472 (2000).
- S. Sinha, S. Bano, V.K. Agrawal and P.V. Khadikar, Oxid. Commun., 22, 479 (1999).
- C. Hansch and T.E. Klein, Acc. Chem. Res., 19, 392 (1986); https://doi.org/10.1021/ar00132a003.
- S. Kumar, S. Drabu, B.P. Panda, R. Kumar and S. Bawa, J. Pharm. Bioallied Sci., 1, 32 (2009); https://doi.org/10.4103/0975-7406.62684.
- B. C. Revanasiddappa, E. V. Subrahmanyam, S. Satyanarayana, D. Thomas John, Int. J. Chemtech. Res., 1, 1100 (2009).
- http://www.openmolecules.org.
- http://www.bioinformatikz.googlepages.com.
References
J. Elguero and K.T. Inpotts, Comprehensive Heterocyclic Chemistry. Pergamon Press: Oxford, vol. 5, pp 167 (1984).
T.D. Penning, J.J. Talley, S.R. Bertenshaw, J.S. Carter, P.W. Collins, S. Docter, M.J. Graneto, L.F. Lee, J.W. Malecha, J.M. Miyashiro, R.S. Rogers, D.J. Rogier, S.S. Yu, G.D. Anderson, E.G. Burton, J.N. Cogburn, S.A. Gregory, C.M. Koboldt, W.E. Perkins, K. Seibert, A.W. Veenhuizen, Y.Y. Zhang and P.C. Isakson, J. Med. Chem., 40, 1347 (1997); https://doi.org/10.1021/jm960803q.
G. Menozzi, L. Mosti, P. Fossa, F. Mattioli and M. Ghia, J. Heterocycl. Chem., 34, 963 (1997); https://doi.org/10.1002/jhet.5570340339.
R.D. Naik and K.R. Desai, Orient. J. Chem., 14, 161 (1998).
M. Kidwai and N. Negi, Monatsh. Chem., 85, 128 (1997); https://doi.org/10.1007/BF00807642.
O.A. El-Sayed and F.B. El-Bieh, Boll. Chim. Farm., 141, 461 (2002).
P. Siminoff and R.R. Crenshaw, Antimicrob. Agents Chemother., 11, 571 (1977); https://doi.org/10.1128/AAC.11.3.571.
R.G. Stein, J.H. Biel and T. Singh, J. Med. Chem., 13, 153 (1970); https://doi.org/10.1021/jm00295a049.
A.A. Joshi, S.S. Narkhede and C.L. Viswanathan, Bioorg. Med. Chem. Lett., 15, 73 (2005); https://doi.org/10.1016/j.bmcl.2004.10.037.
J.C. Craig and D.E. Pearson, J. Med. Chem., 14, 1221 (1971); https://doi.org/10.1021/jm00294a022.
T. Suresh, R.N. Kumar, S. Magesh and P.S. Mohan, Indian J. Chem., 42B, 2133 (2003).
T.R.N. Suresh Kumar, S. Magesh, P.S. Mohan, Indian J. Chem., 42B, 688 (2003).
H.V. Patel, K.V. Vyas and P.S. Fernandes, Indian J. Chem., 29B, 836 (1990).
A. Dlugosz and D. Dus, Farmaco, 51, 367 (1996).
H. Skraup, Chem. Ber., 12, 2331 (1879); https://doi.org/10.1002/cber.187901202299.
O. Doebner and W. Miller, Bericht, 16, 2464 (1883); https://doi.org/10.1002/cber.188301602176.
P. Friedlaender, Chem. Ber., 15, 2572 (1882); https://doi.org/10.1002/cber.188201502219.
N. Hall, Science, 32, 266 (1994); https://doi.org/10.1126/science.266.5182.32.
S. Sharma, K. Anita, B. Shaik, I. Ahmad and V.K. Agrawal, J. Eng. Sci. Manage. Educ., 6, 153 (2013).
B. Shaik, J. Singh and V.K. Agrawal, Med. Chem. Res., 21, 2097 (2012); https://doi.org/10.1007/s00044-011-9721-2.
J. Singh, V.K. Agrawal and P.V. Khadikar, J. Indian Chem. Soc., 85, 517 (2008).
V.K. Agrawal, J. Singh, S. Singh and P.V. Khadikar, Oxid. Commun., 31, 17 (2008).
V.K. Agrawal, R. Sharma and P.V. Khadikar, Oxid. Commun., 26, 186 (2003).
V.K. Agrawal, S. Sinha, S. Bano and P.V. Khadikar, Acta Microbiol. Immunol. Hung., 48, 17 (2001).
V.K. Agrawal, R. Srivastava and P.V. Khadikar, Bioorg. Med. Chem., 9, 3287 (2001); https://doi.org/10.1016/S0968-0896(01)00241-3.
V.K. Agrawal, R. Sharma and P.V. Khadikar, Bioorg. Med. Chem., 10, 1361 (2002); https://doi.org/10.1016/S0968-0896(01)00399-6.
V.K. Agrawal, S. Sinha and P.V. Khadikar, Indian J. Chem., 39B, 472 (2000).
S. Sinha, S. Bano, V.K. Agrawal and P.V. Khadikar, Oxid. Commun., 22, 479 (1999).
C. Hansch and T.E. Klein, Acc. Chem. Res., 19, 392 (1986); https://doi.org/10.1021/ar00132a003.
S. Kumar, S. Drabu, B.P. Panda, R. Kumar and S. Bawa, J. Pharm. Bioallied Sci., 1, 32 (2009); https://doi.org/10.4103/0975-7406.62684.
B. C. Revanasiddappa, E. V. Subrahmanyam, S. Satyanarayana, D. Thomas John, Int. J. Chemtech. Res., 1, 1100 (2009).