Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Structure and Thermal Analysis of Silver Nanoparticles using Bakelite Composite
Corresponding Author(s) : Sarvesh Kumar Shailesh
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
In present work, silver nanoparticles are synthesized using phenol and formaldehyde by chemical precipitation method. To obtain the silver nanoparticles, synthesized bakelite complex is decomposed at the 1100 ºC. The formation of the synthesized bakelite composite is confirmed by the infra-red spectroscopy and nuclear magnetic resonance spectroscopy. The chemical composition and crystallographic structure of silver nanoparticles are confirmed by XRD, while scanning electron microscopy and atomic force microscopy are used to characterize the morphology of nanoparticles as well as the distribution of nanoparticle in composite. The SEM analysis indicates the ductile and catastrophic brittle fracture present on the surface of the nanoparticles. The XRD analysis revealed the size of the nanoparticle and the crystal structure which are 24 nm and orthorhombic, respectively. Thermogravimetric analysis determined the 68 % stability of compound at 900 ºC and the process being endothermic.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Petit, P. Lixon and M.P. Pileni, J. Phys. Chem., 97, 12974 (1993); https://doi.org/10.1021/j100151a054.
- C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs and J.R. Heat, Science, 277, 1978 (1997); https://doi.org/10.1126/science.277.5334.1978.
- P.L. McEuen, D.L. Klein, R. Roth, A.K.L. Lim and A.P. Alivisatos, Nature, 389, 699 (1997); https://doi.org/10.1038/39535.
- M. Sastry, A. Gole and S.R. Sainkar, Langmuir, 16, 3553 (2000); https://doi.org/10.1021/la990948a.
- A. Pal, S. Shah and S. Devi, Colloids Surf. A, 302, 483 (2007); https://doi.org/10.1016/j.colsurfa.2007.03.032.
- M.J. Rosemary and T. Pradeep, Colloids Surf. A, 268, 81 (2003); https://doi.org/10.1016/j.jcis.2003.08.009.
- Y. Xie, R. Ye and H. Liu, Colloids Surf. A, 279, 175 (2006); https://doi.org/10.1016/j.colsurfa.2005.12.056.
- M. Maillard, S. Giorgio and M.-P. Pileni, Adv. Mater., 14, 1084 (2002); https://doi.org/10.1002/1521-4095(20020805)14:15<1084::AIDADMA1084>3.0.CO;2-L.
- Z.S. Pillai and P.V. Kamat, J. Phys. Chem. B, 108, 945 (2004); https://doi.org/10.1021/jp037018r.
- K. Patel, S. Kapoor, D.P. Dave and T. Mukherjee, Chem. Sci., 117, 53 (2005); https://doi.org/10.1007/BF02704361.
- R.A. Salkar, P. Jeevanandam, S.T. Aruna, Y. Koltypin and A. Gedanken, J. Mater. Chem., 9, 1333 (1999); https://doi.org/10.1039/a900568d.
- B. Soroushian, I. Lampre, J. Belloni and M. Mostafavi, Radiat. Phys. Chem., 72, 111 (2005); https://doi.org/10.1016/j.radphyschem.2004.02.009.
- M. Starowicz, B. Stypula and J. Banaœ, Electrochem. Commun., 8, 227 (2006); https://doi.org/10.1016/j.elecom.2005.11.018.
- J.-J. Zhu, X.-H. Liao, X.-N. Zhao and H.-Y. Chen, Mater. Lett., 49, 91 (2001); https://doi.org/10.1016/S0167-577X(00)00349-9.
- S. Liu, W. Huang, S. Chen, S. Avivi and A. Gedanken, J. Non-Cryst. Solids, 283, 231 (2001); https://doi.org/10.1016/S0022-3093(01)00362-3.
- K.L. Ekinci, X.H. Huang and M.L. Roukes, Appl. Phys. Lett., 84, 4469 (2004); https://doi.org/10.1063/1.1755417.
- W.C. Lee and Y.H. Cho, Curr. Appl. Phys., 7, 139 (2007); https://doi.org/10.1016/j.cap.2006.03.001.
- C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer and J. Weis, Adv. Mater., 11, 761 (1999); https://doi.org/10.1002/(SICI)1521-4095(199906)11:9<761::AIDADMA761>3.0.CO;2-D.
- S.H. Hong, H.K. Kim, K.H. Cho, S.W. Hwang, J.S. Hwang and D. Ahn, J. Vac. Sci. Technol. B, 24, 136 (2006); https://doi.org/10.1116/1.2150227.
- J.R. Krenn, J.C. Weeber, A. Dereux, E. Bourillot, J.P. Goudonnet, G. Schider, A.R. Leitner, F. Aussenegg and C. Girard, Phys. Rev. B, 60, 5029 (1999); https://doi.org/10.1103/PhysRevB.60.5029.
- M. Mazur, Electrochem. Commun., 6, 400 (2004); https://doi.org/10.1016/j.elecom.2004.02.011.
- A. Biswas, O.C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel and T. Strunskus, Appl. Phys. Lett., 84, 2655 (2004); https://doi.org/10.1063/1.1697626.
- M. Quinten, Appl. Phys. B, 73, 317 (2001); https://doi.org/10.1007/s003400100666.
- G.I. Stegeman and E.M. Wright, Opt. Quantum Electron., 22, 95 (1990); https://doi.org/10.1007/BF02189947.
- A. Biswas, H. Eilers, F. Hidden Jr., O.C. Aktas and C.V.S. Kiran, Appl. Phys. Lett., 88, 13103 (2006); https://doi.org/10.1063/1.2161401.
- H. Wei and H. Eilers, J. Phys. Chem. Solids, 70, 459 (2009); https://doi.org/10.1016/j.jpcs.2008.11.012.
- C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C. Hollars, S.M. Lane, T.R. Huser, P. Nordlander and N.J. Halas, Nano Lett., 5, 1569 (2005); https://doi.org/10.1021/nl050928v.
- G. Braun, I. Pavel, A.R. Morrill, D.S. Seferos, G.C. Bazan, N.O. Reich and M. Moskovits, J. Am. Chem. Soc., 129, 7760 (2007); https://doi.org/10.1021/ja072533e.
- T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H.X. Xu and G. Haran, Proc. Natl. Acad. Sci. USA, 105, 16448 (2008); https://doi.org/10.1073/pnas.0808365105.
- Y. Saito, J.J. Wang, D.A. Smith and D.N. Batchelder, Langmuir, 18, 2959 (2002); https://doi.org/10.1021/la011554y.
- L.T. Hansen, A. Kühle, A.H. Sørensen, J. Bohr and P.E. Lindelof, Nanotechnology, 9, 337 (1998); https://doi.org/10.1088/0957-4484/9/4/006.
- H. Ogura and N. Takahashi, Progr. Electromag. Res., 14, 89 (1996).
- K. Oikawa, H. Kim, N. Watanabe, M. Shigeno, Y. Shirakawabe and K. Yasuda, Ultramicroscopy, 107, 1061 (2007); https://doi.org/10.1016/j.ultramic.2007.03.011.
- P. Klapetek, I. Ohlidal, D. Franta, A. Montaigne-Ramil, A. Bonanni, D. Stifter and H. Sitter, Acta Phys. Slovaca, 53, 223 (2003).
- S.K. Shailesh, B. Tiwari, K. Yadav and D. Prakash, Int. J. Metallurg. Mater. Sci. Eng., 3, 13 (2013).
- S.K. Shailesh, A.K. Roy and B. Tiwari, Mechan. Manufact., 2, 14 (2014); https://doi.org/10.7763/IJMMM.2014.V2.89.
- R.J. Bandaranayake, G.W. Wen, J.Y. Lin, H.X. Jiang and C.M. Sorensen, Appl. Phys. Lett., 67, 831 (1995); https://doi.org/10.1063/1.115458.
- V. Singh and P. Chauhan, J. Phys. Chem. Solids, 70, 1074 (2009); https://doi.org/10.1016/j.jpcs.2009.05.024.
- A.W. Stevenson, M. Milanko and Z. Barnea, Acta Crystallogr., 40, 521 (1984); https://doi.org/10.1107/S0108768184002639.
- J.E. Crowell, E.L. Garfunkel and G.A. Somorjai, Surf. Sci., 121, 303 (1982); https://doi.org/10.1016/0039-6028(82)90045-0.
- E. Giamello, A. Ferrero, S. Coluccia and A. Zecchina, J. Phys. Chem., 95, 9385 (1991); https://doi.org/10.1021/j100176a064.
References
C. Petit, P. Lixon and M.P. Pileni, J. Phys. Chem., 97, 12974 (1993); https://doi.org/10.1021/j100151a054.
C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs and J.R. Heat, Science, 277, 1978 (1997); https://doi.org/10.1126/science.277.5334.1978.
P.L. McEuen, D.L. Klein, R. Roth, A.K.L. Lim and A.P. Alivisatos, Nature, 389, 699 (1997); https://doi.org/10.1038/39535.
M. Sastry, A. Gole and S.R. Sainkar, Langmuir, 16, 3553 (2000); https://doi.org/10.1021/la990948a.
A. Pal, S. Shah and S. Devi, Colloids Surf. A, 302, 483 (2007); https://doi.org/10.1016/j.colsurfa.2007.03.032.
M.J. Rosemary and T. Pradeep, Colloids Surf. A, 268, 81 (2003); https://doi.org/10.1016/j.jcis.2003.08.009.
Y. Xie, R. Ye and H. Liu, Colloids Surf. A, 279, 175 (2006); https://doi.org/10.1016/j.colsurfa.2005.12.056.
M. Maillard, S. Giorgio and M.-P. Pileni, Adv. Mater., 14, 1084 (2002); https://doi.org/10.1002/1521-4095(20020805)14:15<1084::AIDADMA1084>3.0.CO;2-L.
Z.S. Pillai and P.V. Kamat, J. Phys. Chem. B, 108, 945 (2004); https://doi.org/10.1021/jp037018r.
K. Patel, S. Kapoor, D.P. Dave and T. Mukherjee, Chem. Sci., 117, 53 (2005); https://doi.org/10.1007/BF02704361.
R.A. Salkar, P. Jeevanandam, S.T. Aruna, Y. Koltypin and A. Gedanken, J. Mater. Chem., 9, 1333 (1999); https://doi.org/10.1039/a900568d.
B. Soroushian, I. Lampre, J. Belloni and M. Mostafavi, Radiat. Phys. Chem., 72, 111 (2005); https://doi.org/10.1016/j.radphyschem.2004.02.009.
M. Starowicz, B. Stypula and J. Banaœ, Electrochem. Commun., 8, 227 (2006); https://doi.org/10.1016/j.elecom.2005.11.018.
J.-J. Zhu, X.-H. Liao, X.-N. Zhao and H.-Y. Chen, Mater. Lett., 49, 91 (2001); https://doi.org/10.1016/S0167-577X(00)00349-9.
S. Liu, W. Huang, S. Chen, S. Avivi and A. Gedanken, J. Non-Cryst. Solids, 283, 231 (2001); https://doi.org/10.1016/S0022-3093(01)00362-3.
K.L. Ekinci, X.H. Huang and M.L. Roukes, Appl. Phys. Lett., 84, 4469 (2004); https://doi.org/10.1063/1.1755417.
W.C. Lee and Y.H. Cho, Curr. Appl. Phys., 7, 139 (2007); https://doi.org/10.1016/j.cap.2006.03.001.
C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer and J. Weis, Adv. Mater., 11, 761 (1999); https://doi.org/10.1002/(SICI)1521-4095(199906)11:9<761::AIDADMA761>3.0.CO;2-D.
S.H. Hong, H.K. Kim, K.H. Cho, S.W. Hwang, J.S. Hwang and D. Ahn, J. Vac. Sci. Technol. B, 24, 136 (2006); https://doi.org/10.1116/1.2150227.
J.R. Krenn, J.C. Weeber, A. Dereux, E. Bourillot, J.P. Goudonnet, G. Schider, A.R. Leitner, F. Aussenegg and C. Girard, Phys. Rev. B, 60, 5029 (1999); https://doi.org/10.1103/PhysRevB.60.5029.
M. Mazur, Electrochem. Commun., 6, 400 (2004); https://doi.org/10.1016/j.elecom.2004.02.011.
A. Biswas, O.C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel and T. Strunskus, Appl. Phys. Lett., 84, 2655 (2004); https://doi.org/10.1063/1.1697626.
M. Quinten, Appl. Phys. B, 73, 317 (2001); https://doi.org/10.1007/s003400100666.
G.I. Stegeman and E.M. Wright, Opt. Quantum Electron., 22, 95 (1990); https://doi.org/10.1007/BF02189947.
A. Biswas, H. Eilers, F. Hidden Jr., O.C. Aktas and C.V.S. Kiran, Appl. Phys. Lett., 88, 13103 (2006); https://doi.org/10.1063/1.2161401.
H. Wei and H. Eilers, J. Phys. Chem. Solids, 70, 459 (2009); https://doi.org/10.1016/j.jpcs.2008.11.012.
C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C. Hollars, S.M. Lane, T.R. Huser, P. Nordlander and N.J. Halas, Nano Lett., 5, 1569 (2005); https://doi.org/10.1021/nl050928v.
G. Braun, I. Pavel, A.R. Morrill, D.S. Seferos, G.C. Bazan, N.O. Reich and M. Moskovits, J. Am. Chem. Soc., 129, 7760 (2007); https://doi.org/10.1021/ja072533e.
T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H.X. Xu and G. Haran, Proc. Natl. Acad. Sci. USA, 105, 16448 (2008); https://doi.org/10.1073/pnas.0808365105.
Y. Saito, J.J. Wang, D.A. Smith and D.N. Batchelder, Langmuir, 18, 2959 (2002); https://doi.org/10.1021/la011554y.
L.T. Hansen, A. Kühle, A.H. Sørensen, J. Bohr and P.E. Lindelof, Nanotechnology, 9, 337 (1998); https://doi.org/10.1088/0957-4484/9/4/006.
H. Ogura and N. Takahashi, Progr. Electromag. Res., 14, 89 (1996).
K. Oikawa, H. Kim, N. Watanabe, M. Shigeno, Y. Shirakawabe and K. Yasuda, Ultramicroscopy, 107, 1061 (2007); https://doi.org/10.1016/j.ultramic.2007.03.011.
P. Klapetek, I. Ohlidal, D. Franta, A. Montaigne-Ramil, A. Bonanni, D. Stifter and H. Sitter, Acta Phys. Slovaca, 53, 223 (2003).
S.K. Shailesh, B. Tiwari, K. Yadav and D. Prakash, Int. J. Metallurg. Mater. Sci. Eng., 3, 13 (2013).
S.K. Shailesh, A.K. Roy and B. Tiwari, Mechan. Manufact., 2, 14 (2014); https://doi.org/10.7763/IJMMM.2014.V2.89.
R.J. Bandaranayake, G.W. Wen, J.Y. Lin, H.X. Jiang and C.M. Sorensen, Appl. Phys. Lett., 67, 831 (1995); https://doi.org/10.1063/1.115458.
V. Singh and P. Chauhan, J. Phys. Chem. Solids, 70, 1074 (2009); https://doi.org/10.1016/j.jpcs.2009.05.024.
A.W. Stevenson, M. Milanko and Z. Barnea, Acta Crystallogr., 40, 521 (1984); https://doi.org/10.1107/S0108768184002639.
J.E. Crowell, E.L. Garfunkel and G.A. Somorjai, Surf. Sci., 121, 303 (1982); https://doi.org/10.1016/0039-6028(82)90045-0.
E. Giamello, A. Ferrero, S. Coluccia and A. Zecchina, J. Phys. Chem., 95, 9385 (1991); https://doi.org/10.1021/j100176a064.