Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Solvents on Size of Copper Oxide Nanoparticles Fabricated using Photolysis Method
Corresponding Author(s) : Zaid Hamid Mahmoud
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
Copper oxide nanoparticles with different size were successfully fabricated by the photolysis method through the irradiation of copper oxalate complex with different solvents. The effect of the type of solvent on the size of nanoparticles was investigated. The structure and size of nanoparticles were determined using XRD and TEM, while the spectral properties of copper oxide nanoparticles investigated using FTIR and UV-visible. XRD diffraction studies obtained pure monoclinic structure of copper oxide without secondary phase and the size of particles (8.4 to 11.4 nm) depends strongly on the dielectric constant of solvents and the smallest particles of copper oxide were showed when using the ethanol as solvent. A blue shift in the essential gap energy (from 4.21 to 4.58 eV) due to the quantum confinement effect, is obtained in the spectra analysis when the particles size decreases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.N. Tiwari, R.N. Tiwari and K.S. Kim, Prog. Mater. Sci., 57, 724 (2012); https://doi.org/10.1016/j.pmatsci.2011.08.003.
- M.J.S. Spencer, Prog. Mater. Sci., 57, 437 (2012); https://doi.org/10.1016/j.pmatsci.2011.06.001.
- S. Barth, F. Hernandez-Ramirez, J.D. Holmes and A. Romano-Rodriguez, Prog. Mater. Sci., 55, 563 (2010); https://doi.org/10.1016/j.pmatsci.2010.02.001.
- X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535.
- J. Park, J. Joo, S.G. Kwon, Y. Jang and T. Hyeon, Angew. Chem. Int. Ed., 46, 4630 (2007); https://doi.org/10.1002/anie.200603148.
- H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell and K. Kalantarzadeh, Adv. Funct. Mater., 21, 2175 (2011); https://doi.org/10.1002/adfm.201002477.
- A.M. Hunashyal, S.J. Suman, N.R. Banapurmath, S.S. Quadri and A. Shettar, SOP Transac. Nanotechnol., 2, 1 (2015); https://doi.org/10.15764/NANO.2015.01001.
- K.J. Choi and H.W. Jang, Sensors, 10, 4083 (2010); https://doi.org/10.3390/s100404083.
- M.-K. Song, S. Park, F.M. Alamgir, J. Cho and M. Liu, Mater. Sci. Eng. R: Reports, 72, 203 (2011); https://doi.org/10.1016/j.mser.2011.06.001.
- R.V. Kumar, Y. Diamant and A. Gedanken,Chem. Mater., 12, 2301 (2000); https://doi.org/10.1021/cm000166z.
- S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young and B.R. Huang, Sens. Actuators A, 171, 207 (2011); https://doi.org/10.1016/j.sna.2011.09.011.
- C. Rossi, K.D. Zhang, D. Esteve, P. Alphonse, P. Tailhades and C. Vahlas, J. Microelectromech. Syst., 16, 919 (2007); https://doi.org/10.1109/JMEMS.2007.893519.
- S.H. Kim,A. Umar, R. Kumar, A.A. Ibrahim and G. Kumar, Mater. Lett., 156, 138 (2015); https://doi.org/10.1016/j.matlet.2015.05.014.
- R. Azimirad and S. Safa, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 44, 798 (2014); https://doi.org/10.1080/15533174.2013.790440.
- Q. Zhang, Y. Li, D. Xu and Z. Gu, J. Mater. Sci. Lett., 20, 925 (2001); https://doi.org/10.1023/A:1010984917974.
- R. Azimirad, S. Safa and O. Akhavan, Acta Phys. Poloncia A, 127, 1727 (2015); https://doi.org/10.12693/APhysPolA.127.1727.
- S. Sonia, N.D. Jayram, P.S. Kumar, D. Mangalaraj, N. Ponpandian and C. Viswanathan, Superlatt. Microstruct., 66, 1 (2014); https://doi.org/10.1016/j.spmi.2013.10.020.
- H. Fan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie and B. Zou,Nanotechnology, 15, 37 (2004); https://doi.org/10.1088/0957-4484/15/1/007.
- X.-Y. Yu, R.-X. Xu, C. Gao, T. Luo, Y. Jia, J.-H. Liu and X.-J. Huang, ACS Appl. Mater. Interf., 4, 1954 (2012); https://doi.org/10.1021/am201663d.
- A.V. Nikam, A. Arulkashmir, K. Krishnamoorthy, A.A. Kulkarni and B.L.V. Prasad, Cryst. Growth Des., 14, 4329 (2014); https://doi.org/10.1021/cg500394p.
- H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, Kluwer (1997).
- R.P. Sear, CrystEngComm, 16, 6506 (2014); https://doi.org/10.1039/C4CE00344F.
- F.F. Abraham, Homogeneous Nucleation Theory, Academic Press, NY (1974).
- M. Geetha, K. Suguna, P.M. Anbarasan and V. Aroulmoji, Int. J. Adv. Sci. Eng., 1, 1 (2014).
- K. Borgohain and S. Mahamuni, J. Mater. Res., 17, 1220 (2002); https://doi.org/10.1557/JMR.2002.0180.
- G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH (2004)
References
J.N. Tiwari, R.N. Tiwari and K.S. Kim, Prog. Mater. Sci., 57, 724 (2012); https://doi.org/10.1016/j.pmatsci.2011.08.003.
M.J.S. Spencer, Prog. Mater. Sci., 57, 437 (2012); https://doi.org/10.1016/j.pmatsci.2011.06.001.
S. Barth, F. Hernandez-Ramirez, J.D. Holmes and A. Romano-Rodriguez, Prog. Mater. Sci., 55, 563 (2010); https://doi.org/10.1016/j.pmatsci.2010.02.001.
X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535.
J. Park, J. Joo, S.G. Kwon, Y. Jang and T. Hyeon, Angew. Chem. Int. Ed., 46, 4630 (2007); https://doi.org/10.1002/anie.200603148.
H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell and K. Kalantarzadeh, Adv. Funct. Mater., 21, 2175 (2011); https://doi.org/10.1002/adfm.201002477.
A.M. Hunashyal, S.J. Suman, N.R. Banapurmath, S.S. Quadri and A. Shettar, SOP Transac. Nanotechnol., 2, 1 (2015); https://doi.org/10.15764/NANO.2015.01001.
K.J. Choi and H.W. Jang, Sensors, 10, 4083 (2010); https://doi.org/10.3390/s100404083.
M.-K. Song, S. Park, F.M. Alamgir, J. Cho and M. Liu, Mater. Sci. Eng. R: Reports, 72, 203 (2011); https://doi.org/10.1016/j.mser.2011.06.001.
R.V. Kumar, Y. Diamant and A. Gedanken,Chem. Mater., 12, 2301 (2000); https://doi.org/10.1021/cm000166z.
S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young and B.R. Huang, Sens. Actuators A, 171, 207 (2011); https://doi.org/10.1016/j.sna.2011.09.011.
C. Rossi, K.D. Zhang, D. Esteve, P. Alphonse, P. Tailhades and C. Vahlas, J. Microelectromech. Syst., 16, 919 (2007); https://doi.org/10.1109/JMEMS.2007.893519.
S.H. Kim,A. Umar, R. Kumar, A.A. Ibrahim and G. Kumar, Mater. Lett., 156, 138 (2015); https://doi.org/10.1016/j.matlet.2015.05.014.
R. Azimirad and S. Safa, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 44, 798 (2014); https://doi.org/10.1080/15533174.2013.790440.
Q. Zhang, Y. Li, D. Xu and Z. Gu, J. Mater. Sci. Lett., 20, 925 (2001); https://doi.org/10.1023/A:1010984917974.
R. Azimirad, S. Safa and O. Akhavan, Acta Phys. Poloncia A, 127, 1727 (2015); https://doi.org/10.12693/APhysPolA.127.1727.
S. Sonia, N.D. Jayram, P.S. Kumar, D. Mangalaraj, N. Ponpandian and C. Viswanathan, Superlatt. Microstruct., 66, 1 (2014); https://doi.org/10.1016/j.spmi.2013.10.020.
H. Fan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie and B. Zou,Nanotechnology, 15, 37 (2004); https://doi.org/10.1088/0957-4484/15/1/007.
X.-Y. Yu, R.-X. Xu, C. Gao, T. Luo, Y. Jia, J.-H. Liu and X.-J. Huang, ACS Appl. Mater. Interf., 4, 1954 (2012); https://doi.org/10.1021/am201663d.
A.V. Nikam, A. Arulkashmir, K. Krishnamoorthy, A.A. Kulkarni and B.L.V. Prasad, Cryst. Growth Des., 14, 4329 (2014); https://doi.org/10.1021/cg500394p.
H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, Kluwer (1997).
R.P. Sear, CrystEngComm, 16, 6506 (2014); https://doi.org/10.1039/C4CE00344F.
F.F. Abraham, Homogeneous Nucleation Theory, Academic Press, NY (1974).
M. Geetha, K. Suguna, P.M. Anbarasan and V. Aroulmoji, Int. J. Adv. Sci. Eng., 1, 1 (2014).
K. Borgohain and S. Mahamuni, J. Mater. Res., 17, 1220 (2002); https://doi.org/10.1557/JMR.2002.0180.
G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH (2004)