Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antimicrobial Properties of [Cu2(μ-O2CC9H19)4(4-CNpy)2]
Corresponding Author(s) : Bhabatosh Banik
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
Reports on the isolation and crystallographic characterization of metal carboxylates having long alkyl chains are relatively rare. Herein, a dinuclear copper(II) tetracaprate (i.e. tetradecanoate) complex, [Cu2(μ-O2CC9H19)4(4-CNpy)2] (I), where 4-CNpy = 4-cyanopyridine is reported. The complex has been synthesized by a facile method and characterized by various physico-chemical techniques such as IR and UV-vis spectroscopy, magnetic susceptibility measurement and single crystal X-ray diffraction. The structure is dimeric with the familiar paddle-wheel geometry, which was originally observed in the structure of copper(II) acetate monohydrate. In the dimeric structure, both copper(II) centres display distorted square pyramidal geometry. The substituted pyridine ligands occupy the apical positions through the pyridyl nitrogen atoms. Complex I has been tested for antimicrobial behaviour against a few bacterial strains. Owing to the redox-active nature of copper, complex I shows considerable promise as an antimicrobial agent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Chen, H. Meng, L. Jiang and S.T. Wang, Chem. Asian J., 6, 1757 (2011); https://doi.org/10.1002/asia.201100010
- J.R.J. Sorensen and H. Sigel, Metal Ions in Biological Systems, Mercel Dekker, Inc.: New York, vol. 4, Chap. 14, (1982).
- Z. Islam, P.K. Kouli, S. Baruah, M. Chakrabortty, R.A. Bepari and B.K. Das, Polyhedron, 155, 351 (2018); https://doi.org/10.1016/j.poly.2018.08.063
- V. Paredes-García, R.C. Santana, R. Madrid, A. Vega, E. Spodine and D. Venegas-Yazigi, Inorg. Chem., 52, 8369 (2013); https://doi.org/10.1021/ic3027804
- P. Herich, L. Buèinský, M. Breza, M. Gall, M. Fronc, V. Petricek and J. Kozíšek, Acta Cryst., B74, 681 (2018); https://doi.org/10.1107/S2052520618013707
- Viola, N. Muhammad, M. Ikram, S. Rehman, S. Ali, M.N. Akhtar, M.A. AlDamen and C. Schulzke, J. Mol. Struct., 1196, 754 (2019); https://doi.org/10.1016/j.molstruc.2019.06.095
- Z. Islam, P.K. Kouli and B.K. Das, J. Indian Chem. Soc., 95, 707 (2018).
- R.K. Barman and B.K. Das, Acta Cryst., C57, 1025 (2001); https://doi.org/10.1107/S0108768109021090
- J. Catterick and P. Thornton, Adv. Inorg. Chem. Radiochem., 20, 291 (1977); https://doi.org/10.1016/S0065-2792(08)60041-2
- M. Kato and Y. Muto, Coord. Chem. Rev., 92, 45 (1988); https://doi.org/10.1016/0010-8545(88)85005-7
- P. Sarmah, B.K. Das and P. Phukan, Catal. Commun., 11, 932 (2010); https://doi.org/10.1016/j.catcom.2010.03.005
- A.D. Burrows, C.G. Frost, M.F. Mahon, M. Winsper, C. Richardson, J.P. Attfield and J.A. Rodgers, Dalton Trans., 47, 6788 (2008); https://doi.org/10.1039/b807063f
- H.D. Burrows and H.A. Ellis, Thermochim. Acta, 52, 121 (1982); https://doi.org/10.1016/0040-6031(82)85190-3
- H. Abied, D. Guillon, A. Skoulios, P. Weber, A.M. Giroud-godquin and J.C. Marchon, Liq. Cryst., 2, 269 (1987); https://doi.org/10.1080/02678298708086676
- B. Kozlevèar, N. Lah, I. Leban, I. Turel, P. Šegedin, M. Petriè, F. Pohleven, A.J.P. White, D.J. Williams and G. Giester, Croat. Chem. Acta, 72, 427 (1999).
- B. Kozlevèar, N. Lah, I. Leban, F. Pohleven and P. Šegedin, Croat. Chem. Acta, 73, 733 (2000).
- M. Petriè, I. Leban and P. Šegedin, Polyhedron, 14, 983 (1995); https://doi.org/10.1016/0277-5387(94)00362-I
- M. Petriè, I. Leban and P. Šegedin, Polyhedron, 15, 4277 (1996); https://doi.org/10.1016/0277-5387(96)00135-0
- B. Kozlevèar, I. Leban, M. Petriè, S. Petrièek, O. Roubeau, J. Reedijk and P. Šegedin, Inorg. Chim. Acta, 357, 4220 (2004); https://doi.org/10.1016/j.ica.2004.06.012
- J. Li, A.N. Pham, R. Dai, Z. Wang and T.D. Waite, J. Hazard. Mater., 392, 122261 (2020); https://doi.org/10.1016/j.jhazmat.2020.122261
- A.N. Pham, G. Xing, C.J. Miller and T.D. Waite, J. Catal., 301, 54 (2013); https://doi.org/10.1016/j.jcat.2013.01.025
- R. Zhang, X. Qin, F. Kong, P. Chen and G. Pan, Drug Deliv., 26, 328 (2019); https://doi.org/10.1080/10717544.2019.1582730
- M.R. Naylor, A.M. Ly, M.J. Handford, D.P. Ramos, C.R. Pye, A. Furukawa, V.G. Klein, R.P. Noland, Q. Edmondson, A.C. Turmon, W.M. Hewitt, J. Schwochert, C.E. Townsend, C.N. Kelly, M.J. Blanco and R.S. Lokey, J. Med. Chem., 61, 11169 (2018); https://doi.org/10.1021/acs.jmedchem.8b01259
- M. Gogoi and B.K. Das, Acta Crystallogr. E, 76, 1775 (2020); https://doi.org/10.1107/S2056989020014103
- G.M. Sheldrick, Acta Crystallogr. C, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930
- L.J. Farrugia, J. Appl. Cryst., 32, 837 (1999); https://doi.org/10.1107/S0021889899006020
- L. Farrugia, J. Appl. Cryst., 30, 565 (1997); https://doi.org/10.1107/S0021889897003117
- Mercury Software: Version 1.4.2, Cambridge Crystallographic Data Centre (CCDC), Cambridge: UK (2007).
- D. Dutta, S. Chetry, A. Gogoi, B. Choudhury, A.K. Guha and M.K. Bhattacharyya, Polyhedron, 151, 381 (2018); https://doi.org/10.1016/j.poly.2018.05.039
- A. Solanki, M.H. Sadhu, S. Patel, R. Devkar and S.B. Kumar, Polyhedron, 102, 267 (2015); https://doi.org/10.1016/j.poly.2015.09.012
- M.N. Patel, C.R. Patel and H.N. Joshi, Inorg. Chem. Commun., 27, 51 (2013); https://doi.org/10.1016/j.inoche.2012.10.018
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam (1984).
- L.K. Minacheva, T.S. Khodashova, M.A. Porai-Koshits and A.Y. Tsivadze, Koord. Khim., 7, 455 (1981).
- M. Inoue and M. Kubo, Inorg. Chem., 9, 2310 (1970); https://doi.org/10.1021/ic50092a022
- T. Hökelek, H. Necefouglu and M. Balci, Acta Cryst., C51, 2020 (1995); https://doi.org/10.1107/S0108270195000618
- O.Z. Yesilel, I. Ilker, M.S. Soylu, C. Darcan and Y. Süzen, Polyhedron, 39, 14 (2012); https://doi.org/10.1016/j.poly.2012.03.027
- R.J. Fair and Y. Tor, Perspect. Med. Chem., 6, PMC.S14459 (2014); https://doi.org/10.4137/PMC.S14459
- A. Frei, J. Zuegg, A.G. Elliott, M. Baker, S. Braese, C. Brown, F. Chen, C. G. Dowson, G. Dujardin, N. Jung, A.P. King, A.M. Mansour, M. Massi, J. Moat, H.A. Mohamed, A.K. Renfrew, P.J. Rutledge, P.J. Sadler, M.H. Todd, C.E. Willans, J.J. Wilson, M.A. Cooper and M.A.T. Blaskovich, Chem. Sci., 11, 2627 (2020); https://doi.org/10.1039/C9SC06460E
- R.J. Turner, Microb. Biotechnol., 10, 1062 (2017); https://doi.org/10.1111/1751-7915.12785
- A.G. Dalecki, C.L. Crawford and F. Wolschendorf, Adv. Microb. Physiol., 70, 193 (2017); https://doi.org/10.1016/bs.ampbs.2017.01.007
- R.N. Patel, V.P. Sondhiya, K.K. Shukla, D.K. Patel and Y. Singh, Polyhedron, 50, 139 (2013); https://doi.org/10.1016/j.poly.2012.10.027
References
L. Chen, H. Meng, L. Jiang and S.T. Wang, Chem. Asian J., 6, 1757 (2011); https://doi.org/10.1002/asia.201100010
J.R.J. Sorensen and H. Sigel, Metal Ions in Biological Systems, Mercel Dekker, Inc.: New York, vol. 4, Chap. 14, (1982).
Z. Islam, P.K. Kouli, S. Baruah, M. Chakrabortty, R.A. Bepari and B.K. Das, Polyhedron, 155, 351 (2018); https://doi.org/10.1016/j.poly.2018.08.063
V. Paredes-García, R.C. Santana, R. Madrid, A. Vega, E. Spodine and D. Venegas-Yazigi, Inorg. Chem., 52, 8369 (2013); https://doi.org/10.1021/ic3027804
P. Herich, L. Buèinský, M. Breza, M. Gall, M. Fronc, V. Petricek and J. Kozíšek, Acta Cryst., B74, 681 (2018); https://doi.org/10.1107/S2052520618013707
Viola, N. Muhammad, M. Ikram, S. Rehman, S. Ali, M.N. Akhtar, M.A. AlDamen and C. Schulzke, J. Mol. Struct., 1196, 754 (2019); https://doi.org/10.1016/j.molstruc.2019.06.095
Z. Islam, P.K. Kouli and B.K. Das, J. Indian Chem. Soc., 95, 707 (2018).
R.K. Barman and B.K. Das, Acta Cryst., C57, 1025 (2001); https://doi.org/10.1107/S0108768109021090
J. Catterick and P. Thornton, Adv. Inorg. Chem. Radiochem., 20, 291 (1977); https://doi.org/10.1016/S0065-2792(08)60041-2
M. Kato and Y. Muto, Coord. Chem. Rev., 92, 45 (1988); https://doi.org/10.1016/0010-8545(88)85005-7
P. Sarmah, B.K. Das and P. Phukan, Catal. Commun., 11, 932 (2010); https://doi.org/10.1016/j.catcom.2010.03.005
A.D. Burrows, C.G. Frost, M.F. Mahon, M. Winsper, C. Richardson, J.P. Attfield and J.A. Rodgers, Dalton Trans., 47, 6788 (2008); https://doi.org/10.1039/b807063f
H.D. Burrows and H.A. Ellis, Thermochim. Acta, 52, 121 (1982); https://doi.org/10.1016/0040-6031(82)85190-3
H. Abied, D. Guillon, A. Skoulios, P. Weber, A.M. Giroud-godquin and J.C. Marchon, Liq. Cryst., 2, 269 (1987); https://doi.org/10.1080/02678298708086676
B. Kozlevèar, N. Lah, I. Leban, I. Turel, P. Šegedin, M. Petriè, F. Pohleven, A.J.P. White, D.J. Williams and G. Giester, Croat. Chem. Acta, 72, 427 (1999).
B. Kozlevèar, N. Lah, I. Leban, F. Pohleven and P. Šegedin, Croat. Chem. Acta, 73, 733 (2000).
M. Petriè, I. Leban and P. Šegedin, Polyhedron, 14, 983 (1995); https://doi.org/10.1016/0277-5387(94)00362-I
M. Petriè, I. Leban and P. Šegedin, Polyhedron, 15, 4277 (1996); https://doi.org/10.1016/0277-5387(96)00135-0
B. Kozlevèar, I. Leban, M. Petriè, S. Petrièek, O. Roubeau, J. Reedijk and P. Šegedin, Inorg. Chim. Acta, 357, 4220 (2004); https://doi.org/10.1016/j.ica.2004.06.012
J. Li, A.N. Pham, R. Dai, Z. Wang and T.D. Waite, J. Hazard. Mater., 392, 122261 (2020); https://doi.org/10.1016/j.jhazmat.2020.122261
A.N. Pham, G. Xing, C.J. Miller and T.D. Waite, J. Catal., 301, 54 (2013); https://doi.org/10.1016/j.jcat.2013.01.025
R. Zhang, X. Qin, F. Kong, P. Chen and G. Pan, Drug Deliv., 26, 328 (2019); https://doi.org/10.1080/10717544.2019.1582730
M.R. Naylor, A.M. Ly, M.J. Handford, D.P. Ramos, C.R. Pye, A. Furukawa, V.G. Klein, R.P. Noland, Q. Edmondson, A.C. Turmon, W.M. Hewitt, J. Schwochert, C.E. Townsend, C.N. Kelly, M.J. Blanco and R.S. Lokey, J. Med. Chem., 61, 11169 (2018); https://doi.org/10.1021/acs.jmedchem.8b01259
M. Gogoi and B.K. Das, Acta Crystallogr. E, 76, 1775 (2020); https://doi.org/10.1107/S2056989020014103
G.M. Sheldrick, Acta Crystallogr. C, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930
L.J. Farrugia, J. Appl. Cryst., 32, 837 (1999); https://doi.org/10.1107/S0021889899006020
L. Farrugia, J. Appl. Cryst., 30, 565 (1997); https://doi.org/10.1107/S0021889897003117
Mercury Software: Version 1.4.2, Cambridge Crystallographic Data Centre (CCDC), Cambridge: UK (2007).
D. Dutta, S. Chetry, A. Gogoi, B. Choudhury, A.K. Guha and M.K. Bhattacharyya, Polyhedron, 151, 381 (2018); https://doi.org/10.1016/j.poly.2018.05.039
A. Solanki, M.H. Sadhu, S. Patel, R. Devkar and S.B. Kumar, Polyhedron, 102, 267 (2015); https://doi.org/10.1016/j.poly.2015.09.012
M.N. Patel, C.R. Patel and H.N. Joshi, Inorg. Chem. Commun., 27, 51 (2013); https://doi.org/10.1016/j.inoche.2012.10.018
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam (1984).
L.K. Minacheva, T.S. Khodashova, M.A. Porai-Koshits and A.Y. Tsivadze, Koord. Khim., 7, 455 (1981).
M. Inoue and M. Kubo, Inorg. Chem., 9, 2310 (1970); https://doi.org/10.1021/ic50092a022
T. Hökelek, H. Necefouglu and M. Balci, Acta Cryst., C51, 2020 (1995); https://doi.org/10.1107/S0108270195000618
O.Z. Yesilel, I. Ilker, M.S. Soylu, C. Darcan and Y. Süzen, Polyhedron, 39, 14 (2012); https://doi.org/10.1016/j.poly.2012.03.027
R.J. Fair and Y. Tor, Perspect. Med. Chem., 6, PMC.S14459 (2014); https://doi.org/10.4137/PMC.S14459
A. Frei, J. Zuegg, A.G. Elliott, M. Baker, S. Braese, C. Brown, F. Chen, C. G. Dowson, G. Dujardin, N. Jung, A.P. King, A.M. Mansour, M. Massi, J. Moat, H.A. Mohamed, A.K. Renfrew, P.J. Rutledge, P.J. Sadler, M.H. Todd, C.E. Willans, J.J. Wilson, M.A. Cooper and M.A.T. Blaskovich, Chem. Sci., 11, 2627 (2020); https://doi.org/10.1039/C9SC06460E
R.J. Turner, Microb. Biotechnol., 10, 1062 (2017); https://doi.org/10.1111/1751-7915.12785
A.G. Dalecki, C.L. Crawford and F. Wolschendorf, Adv. Microb. Physiol., 70, 193 (2017); https://doi.org/10.1016/bs.ampbs.2017.01.007
R.N. Patel, V.P. Sondhiya, K.K. Shukla, D.K. Patel and Y. Singh, Polyhedron, 50, 139 (2013); https://doi.org/10.1016/j.poly.2012.10.027