Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Molecular Docking, Biological Potentials and Structure Activity Relationship of New Quinazoline and Quinazoline-4-one Derivatives
Corresponding Author(s) : Mohammed A. Hussein
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
In this work, a new derivative of ethyl 5-chloro-2-(3-(4-hydroxyphenyl)propanamido)benzoate (1) was synthesized by reacting the amino group of 3-(4-hydroxyphenyl)propanoic acid (0.01 mol) and methyl 2-amino-5-chlorobenzoate in presence of PCl3. Cyclcondensation of 1 with hydrazine hydrate afforded the corresponding 2-(4-hydroxyphenethyl)-3-amino-6-chloroquinazolin-4(3H)-one (2). Also, new Schiff base 3 was prepared via reaction of 2-(4-hydroxyphenethyl)-3-amino-6-chloroquinazolin-4(3H)-one (2) with 4-hydroxy-3-methoxybenzaldehyde. The synthesized compounds were characterized by elemental analysis, IR, 1H NMR and mass spectral data. Also, the median lethal doses (LD50s) of compounds 1-3 in rats were 1125, 835 and 1785 mg/kg b.w., respectively. IC50 values of compounds (1, 3) as measured by DPPH• method was 136.47 and 73.54 μg/mL, respectively. IC50 values of compounds (1-3) as measured by ABTS•+ radical method was 0.8, 0.92 and 0.08 mg/mL, respectively. Antiulcerogenic activity at dose 1/20 LD50 in albino rats was 47.94, 24.60 and 56.45%, respectively. However, the anti-inflammatory effect at dose 1/20 LD50 of compounds (1-3) induced edema model after 120 min were 74.19, 69.93 and 59.03%, respectively. The synthesized compounds also possess hepatocytes and gastric mucosa protective activity against ibuprofen induced ulceration and LPS-induced liver toxicity, respectively in rats via normalization of oxidative stress biomarkers and inflammatory mediators (Na+/K+-ATPase, ALT, AST, LDH, TNF-α, NO, TBARS, GPx, CAT and SOD). Also, TNF-α, NO, PGE2 and COX-2 were inhibited in peritoneal macrophage cells at a concentration of 100 μg/L. Molecular docking suggested that the most active compounds 1 and 2 can be positioned within the active sites of COX-2 at Arg121 & Tyr356 similarly to ibuprofen (Arg-120, Glu-524 and Tyr-355). The compound 3–COX-2 complex generated by docking, revealed intricate interactions with a COX-2 channel, including hydrogen bonds with key residues Arg121 and phe519. These findings suggest that compounds 1-3 exhibited good antioxidant, antiulcer, anti-inflammatory activity and safe on liver enzymes in rats.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Tripathi, Non-steroidal Anti-inflammatory Drugs and Anti-pyretic Analgesics. In: Essentials of Medical Pharmacology, Jaypee Brothers, New Delhi, edn 5, p. 176 (2003).
- B.J. Orlando, D.R. McDougle, M.J. Lucido, E.T. Eng, L.A. Graham, C. Schneider, D.L. Stokes, A. Das and M.G. Malkowski, Arch. Biochem. Biophys., 546, 33 (2014);https://doi.org/10.1016/j.abb.2014.01.026
- A.L. Blobaum and L.J. Marnett, J. Med. Chem., 50, 1425 (2007);https://doi.org/10.1021/jm0613166
- J.J. Prusakiewicz, K.C. Duggan, C.A. Rouzer and L.J. Marnett, Biochemistry, 48, 7353 (2009);https://doi.org/10.1021/bi900999z
- W.L. Smith, Y. Urade and P.J. Jakobsson, Chem. Rev., 111, 5821 (2011);https://doi.org/10.1021/cr2002992
- K.C. Duggan, D.J. Hermanson, J. Musee, J.J. Prusakiewicz, J.L. Scheib, B.D. Carter, S. Banerjee, J.A. Oates and L.J. Marnett, Nat. Chem. Biol., 7, 803 (2011);https://doi.org/10.1038/nchembio.663
- M.A. Hussein, Med. Chem. Res., 22, 4641 (2013);https://doi.org/10.1007/s00044-013-0468-9
- M.N. Noolvi, H.M. Patel, V. Bhardwaj and A. Chauhan, Eur. J. Med. Chem., 46, 2327 (2011);https://doi.org/10.1016/j.ejmech.2011.03.015
- W. Dohle, F.L. Jourdan, G. Menchon, A.E. Prota, P.A. Foster, P. Mannion, E. Hamel, M.P. Thomas, P.G. Kasprzyk, E. Ferrandis, M.O. Steinmetz, M.P. Leese and B.V.L. Potter, J. Med. Chem., 61, 1031 (2018);https://doi.org/10.1021/acs.jmedchem.7b01474
- A.A.-M. Abdel-Aziz, L.A. Abou-Zeid, K.E.H. ElTahir, R.R. Ayyad, M.A.-A. El-Sayed and A.S. El-Azab, Eur. J. Med. Chem., 121, 410 (2016);https://doi.org/10.1016/j.ejmech.2016.05.066
- L. Yang, S. Ge, J. Huang and X. Bao, Mol. Divers., 22, 71 (2018);https://doi.org/10.1007/s11030-017-9792-1
- R. Al-Salahi, H.A. Abuelizz, H.A. Ghabbour, R. El-Dib and M. Marzouk, Chem. Cent. J., 10, 21 (2016);https://doi.org/10.1186/s13065-016-0168-x
- V. Alagarsamy, K. Chitra, G. Saravanan, V.R. Solomon, M.T. Sulthana and B. Narendha, Eur. J. Med. Chem., 151, 628 (2018);https://doi.org/10.1016/j.ejmech.2018.03.076
- M.A. Hussein, Med. Chem. Res., 21, 1876 (2012);https://doi.org/10.1007/s00044-011-9707-0
- M.A. Hussein, R.F. Omar and H.S. Farghaly, Int. J. Acad. Res., 3, 454 (2011).
- K.P. Rakesh, C.S. Shantharam and H.M. Manukumar, Bioorg. Chem., 68, 1 (2016);https://doi.org/10.1016/j.bioorg.2016.07.001
- K.P. Rakesh, H.M. Manukumar and D.C. Gowda, Bioorg. Med. Chem., 25, 1072 (2015);https://doi.org/10.1016/j.bmcl.2015.01.010
- F. Koopman, J. Beekwilder, B. Crimi, A. van Houwelingen, R.D. Hall, D. Bosch, A.J.A. van Maris, J.T. Pronk and J.-M. Daran, Microb. Cell Fact., 11, 155 (2012);https://doi.org/10.1186/1475-2859-11-155
- N. Tamilarasan and U. Rajangam, J. Biosci. Med., 4, 85 (2016);https://doi.org/10.4236/jbm.2016.41010
- B.G. Auner, C. Valenta and J. Hadgraft, J. Control. Release, 89, 321 (2003);https://doi.org/10.1016/S0168-3659(03)00124-X
- C.H. Wu, Y.S. Ho, C.Y. Tsai, J. Wang, H. Tseng, L. Wei, C.H. Lee, R.S. Liu and S.Y. Lin, Int. J. Cancer, 124, 2210 (2009);https://doi.org/10.1002/ijc.24189
- X. He and R.H. Liu, J. Agric. Food Chem., 55, 4366 (2007);https://doi.org/10.1021/jf063563o
- M.A. Hussein, Int. J. Org. Bioorg. Chem., 1, 12 (2011).
- Y. Hamauzu, H. Yasui, T. Inno, C. Kume and M. Omanyuda, J. Agric. Food Chem., 53, 928 (2005);https://doi.org/10.1021/jf0494635
- R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999);https://doi.org/10.1016/S0891-5849(98)00315-3
- G.K. Jayaprakasha, L. Jaganmohan Rao and K.K. Sakariah, Bioorg. Med. Chem., 12, 5141 (2004);https://doi.org/10.1016/j.bmc.2004.07.028
- E. Kunchandy and M.N.A. Rao, Int. J. Pharm., 58, 237 (1990);https://doi.org/10.1016/0378-5173(90)90201-E
- D.J. Finney, Statistical Methods in Biological Assay, Charles Griffen & Company Ltd., London (1964).
- S. Santhosh, R. Anandan, T.K. Sini and P.T. Mathew, J. Gastroenterol. Hepatol., 22, 949 (2007);https://doi.org/10.1111/j.1440-1746.2007.04840.x
- P.A. Nwafor, F.K. Okwuasaba and L.G. Binda, J. Ethnopharmacol., 72, 421 (2000);https://doi.org/10.1016/S0378-8741(00)00261-0
- F.A.S. Alasmary, A.S. Awaad, A.M. Alafeefy, R.M. El-Meligy and S.I. Alqasoumi, Saudi Pharm. J., 26, 183 (2018);https://doi.org/10.1016/j.jsps.2017.09.011
- A.P. Kulkarni, R.S. Policegoudra and S.M. Aradhya, J. Food Biochem., 31, 399 (2007);https://doi.org/10.1111/j.1745-4514.2007.00122.x
- O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biol. Chem., 193, 265 (1951);https://doi.org/10.1016/S0021-9258(19)52451-6
- S.L. Bonting, eds.: E.E. Bittar, Sodium Potassium Activated Adenosine Triphosphatase and Carbon Transport, In: Membrane and Iron Transport, Wiley-Interscience: London, vol. 1, pp. 257-363 (1970).
- R. Domenjoz, Schweiz. Med. Wochenschr., 82, 1023 (1952).
- C. Sudhakaran, J. Clin. Diagn. Res., 12, FC05 (2018).
- R. Koster, N. Anderson and E.J. Debber, Fed. Proc., 18, 412 (1959).
- W. Reanmongkol, S. Subhadhirasakul, J. Kongsang, M. Tanchong and J. Kitti, Pharm. Biol., 38, 68 (2000);https://doi.org/10.1076/1388-0209(200001)3811-BFT068
- D. Paglia and W. Valentine, J. Lab. Clin. Med., 70, 158 (1967).
- A.K. Sinha, Ann. Biochem., 47, 389 (1972);https://doi.org/10.1016/0003-2697(72)90132-7
- S. Marklund and D. Marklund, Eur. J. Biochem., 47, 469 (1974);https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
- J. Sedlak and R.H. Lindsay, Anal. Biochem., 25, 192 (1968);https://doi.org/10.1016/0003-2697(68)90092-4
- E. Van Kampen and W. Zijlstra, Clin. Chim. Acta, 6, 538 (1961);https://doi.org/10.1016/0009-8981(61)90145-0
- S. Reitman and S.A. Frankel, Am. J. Clin. Pathol., 28, 56 (1957);https://doi.org/10.1093/ajcp/28.1.56
- J. King, The Dehydrogenase or Oxidoreductatse, Lactate Dehydrogenase, In: Practical Clinical Enzymology, Nostrand Co.: London, pp. 106-115 (1965).
- R. Beyaert and W. Fiers, eds.: R. Mire-Sluis and R. Thorpe, Tumor Necrosis Factor and Lymphotoxin, In: Cytokines, Academic Press: San Diego, pp. 335-360 (1998).
- K.M. Miranda, M.G. Espey and D.A. Wink, Nitric Oxide, 5, 62 (2001);https://doi.org/10.1006/niox.2000.0319
- W.G. Niehaus and B. Samuelsson, Eur. J. Biochem., 6, 126 (1968);https://doi.org/10.1111/j.1432-1033.1968.tb00428.x
- G.D. Bancroft and A. Steven, Theory and Practice of Histological Technique, Churchill Livingstone: New York, edn 4, pp. 99-112 (1983).
- E. Kolaczkowska, B. Arnold and G. Opdenakker, Immunobiology, 213, 109 (2008);https://doi.org/10.1016/j.imbio.2007.07.005
- H. Chu, Q. Tang, H. Huang, W. Hao and X. Wei, Environ. Toxicol. Pharmacol., 41, 159 (2016);https://doi.org/10.1016/j.etap.2015.11.018
- S. Nakatsugi, N. Sugimoto and M. Furukawa, Prostaglandins Leukot. Essent. Fatty Acids, 55, 451 (1996);https://doi.org/10.1016/S0952-3278(96)90130-1
- S.R. Campelo, M.B. da Silva, J.L.F. Vieira, J.P. da Silva and C.G. Salgado, BMC Res. Notes, 4, 24 (2011);https://doi.org/10.1186/1756-0500-4-24
- M.-Z. Zhang, B. Yao, Y. Wang, S. Yang, S. Wang, X. Fan and R.C. Harris, J. Clin. Invest., 125, 4281 (2015);https://doi.org/10.1172/JCI81550
- http://www.rcsb.org/.
- B.J. Orlando, M.J. Lucido and M.G. Malkowski, J. Struct. Biol., 189, 62 (2015);https://doi.org/10.1016/j.jsb.2014.11.005
- M.A. Hussein and M.O. Samir, IJPI's J. Med. Chem., 2, 7 (2010).
- V. Alagarsamy, K. Chitra, G. Saravanan, V.R. Solomon, M.T. Sulthana and B. Narendhar, Eur. J. Med. Chem., 151, 628 (2018);https://doi.org/10.1016/j.ejmech.2018.03.076
- J.E. Hilaly, Z.H. Israili and B. Lyoussi, J. Ethnopharmacol., 91, 43 (2004);https://doi.org/10.1016/j.jep.2003.11.009
- F.L. Lanza, D. Fakouhi and A. Rubin, Am. J. Gastroenterol., 84, 633 (1989).
- K. Bothara, S. Kadam and V. Shivram, Indian Drugs, 35, 372 (1998).
- S. Saxena, M. Verma and A.K. Saxena, Indian J. Chem., 30B, 453 (1991).
- V. Alagarsamy, G. Murugananthan and R. Venkateshperumal, Biol. Pharm. Bull., 26, 1711 (2003);https://doi.org/10.1248/bpb.26.1711
- V. Alagarsamy, S. Revathi and R. Kalaiselvi, S. Phuvaneshwari, R. Revathi, S. Amuthalakshmi, S. Vijayakumar, S.M. Sivakumar, T. Angayarkanni, M. Sarathadevi, S. Saravanakumar, A. Thangathiruppathy, R. Venkatnarayanan and R. Venkatesaperumal, Indian J. Pharm. Sci., 65, 534 (2003).
- M. Zahedifard, F. Lafta Faraj, M. Paydar, C. Yeng Looi, M. Hajrezaei, M. Hasanpourghadi, B. Kamalidehghan, N. Abdul Majid, H. Mohd Ali and M. Ameen Abdulla, Sci. Rep., 5, 11544 (2015);https://doi.org/10.1038/srep11544
- M.W. Wahby, G. Yacout, K. Kamal and D. Awad, Beni-Suef J. Basic Appl. Sci., 4, 291 (2015);https://doi.org/10.1016/j.bjbas.2015.11.004
- V. Limongelli, M. Bonomi, L. Marinelli, F.L. Gervasio, A. Cavalli, E. Novellino and M. Parrinello, Proc. Natl. Acad. Sci. USA, 107, 5411 (2010);https://doi.org/10.1073/pnas.0913377107
- O. Unsal-Tan, K. Ozadali, K. Piskin and A. Balkan, Eur. J. Med. Chem., 57, 59 (2012);https://doi.org/10.1016/j.ejmech.2012.08.046
References
D. Tripathi, Non-steroidal Anti-inflammatory Drugs and Anti-pyretic Analgesics. In: Essentials of Medical Pharmacology, Jaypee Brothers, New Delhi, edn 5, p. 176 (2003).
B.J. Orlando, D.R. McDougle, M.J. Lucido, E.T. Eng, L.A. Graham, C. Schneider, D.L. Stokes, A. Das and M.G. Malkowski, Arch. Biochem. Biophys., 546, 33 (2014);https://doi.org/10.1016/j.abb.2014.01.026
A.L. Blobaum and L.J. Marnett, J. Med. Chem., 50, 1425 (2007);https://doi.org/10.1021/jm0613166
J.J. Prusakiewicz, K.C. Duggan, C.A. Rouzer and L.J. Marnett, Biochemistry, 48, 7353 (2009);https://doi.org/10.1021/bi900999z
W.L. Smith, Y. Urade and P.J. Jakobsson, Chem. Rev., 111, 5821 (2011);https://doi.org/10.1021/cr2002992
K.C. Duggan, D.J. Hermanson, J. Musee, J.J. Prusakiewicz, J.L. Scheib, B.D. Carter, S. Banerjee, J.A. Oates and L.J. Marnett, Nat. Chem. Biol., 7, 803 (2011);https://doi.org/10.1038/nchembio.663
M.A. Hussein, Med. Chem. Res., 22, 4641 (2013);https://doi.org/10.1007/s00044-013-0468-9
M.N. Noolvi, H.M. Patel, V. Bhardwaj and A. Chauhan, Eur. J. Med. Chem., 46, 2327 (2011);https://doi.org/10.1016/j.ejmech.2011.03.015
W. Dohle, F.L. Jourdan, G. Menchon, A.E. Prota, P.A. Foster, P. Mannion, E. Hamel, M.P. Thomas, P.G. Kasprzyk, E. Ferrandis, M.O. Steinmetz, M.P. Leese and B.V.L. Potter, J. Med. Chem., 61, 1031 (2018);https://doi.org/10.1021/acs.jmedchem.7b01474
A.A.-M. Abdel-Aziz, L.A. Abou-Zeid, K.E.H. ElTahir, R.R. Ayyad, M.A.-A. El-Sayed and A.S. El-Azab, Eur. J. Med. Chem., 121, 410 (2016);https://doi.org/10.1016/j.ejmech.2016.05.066
L. Yang, S. Ge, J. Huang and X. Bao, Mol. Divers., 22, 71 (2018);https://doi.org/10.1007/s11030-017-9792-1
R. Al-Salahi, H.A. Abuelizz, H.A. Ghabbour, R. El-Dib and M. Marzouk, Chem. Cent. J., 10, 21 (2016);https://doi.org/10.1186/s13065-016-0168-x
V. Alagarsamy, K. Chitra, G. Saravanan, V.R. Solomon, M.T. Sulthana and B. Narendha, Eur. J. Med. Chem., 151, 628 (2018);https://doi.org/10.1016/j.ejmech.2018.03.076
M.A. Hussein, Med. Chem. Res., 21, 1876 (2012);https://doi.org/10.1007/s00044-011-9707-0
M.A. Hussein, R.F. Omar and H.S. Farghaly, Int. J. Acad. Res., 3, 454 (2011).
K.P. Rakesh, C.S. Shantharam and H.M. Manukumar, Bioorg. Chem., 68, 1 (2016);https://doi.org/10.1016/j.bioorg.2016.07.001
K.P. Rakesh, H.M. Manukumar and D.C. Gowda, Bioorg. Med. Chem., 25, 1072 (2015);https://doi.org/10.1016/j.bmcl.2015.01.010
F. Koopman, J. Beekwilder, B. Crimi, A. van Houwelingen, R.D. Hall, D. Bosch, A.J.A. van Maris, J.T. Pronk and J.-M. Daran, Microb. Cell Fact., 11, 155 (2012);https://doi.org/10.1186/1475-2859-11-155
N. Tamilarasan and U. Rajangam, J. Biosci. Med., 4, 85 (2016);https://doi.org/10.4236/jbm.2016.41010
B.G. Auner, C. Valenta and J. Hadgraft, J. Control. Release, 89, 321 (2003);https://doi.org/10.1016/S0168-3659(03)00124-X
C.H. Wu, Y.S. Ho, C.Y. Tsai, J. Wang, H. Tseng, L. Wei, C.H. Lee, R.S. Liu and S.Y. Lin, Int. J. Cancer, 124, 2210 (2009);https://doi.org/10.1002/ijc.24189
X. He and R.H. Liu, J. Agric. Food Chem., 55, 4366 (2007);https://doi.org/10.1021/jf063563o
M.A. Hussein, Int. J. Org. Bioorg. Chem., 1, 12 (2011).
Y. Hamauzu, H. Yasui, T. Inno, C. Kume and M. Omanyuda, J. Agric. Food Chem., 53, 928 (2005);https://doi.org/10.1021/jf0494635
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999);https://doi.org/10.1016/S0891-5849(98)00315-3
G.K. Jayaprakasha, L. Jaganmohan Rao and K.K. Sakariah, Bioorg. Med. Chem., 12, 5141 (2004);https://doi.org/10.1016/j.bmc.2004.07.028
E. Kunchandy and M.N.A. Rao, Int. J. Pharm., 58, 237 (1990);https://doi.org/10.1016/0378-5173(90)90201-E
D.J. Finney, Statistical Methods in Biological Assay, Charles Griffen & Company Ltd., London (1964).
S. Santhosh, R. Anandan, T.K. Sini and P.T. Mathew, J. Gastroenterol. Hepatol., 22, 949 (2007);https://doi.org/10.1111/j.1440-1746.2007.04840.x
P.A. Nwafor, F.K. Okwuasaba and L.G. Binda, J. Ethnopharmacol., 72, 421 (2000);https://doi.org/10.1016/S0378-8741(00)00261-0
F.A.S. Alasmary, A.S. Awaad, A.M. Alafeefy, R.M. El-Meligy and S.I. Alqasoumi, Saudi Pharm. J., 26, 183 (2018);https://doi.org/10.1016/j.jsps.2017.09.011
A.P. Kulkarni, R.S. Policegoudra and S.M. Aradhya, J. Food Biochem., 31, 399 (2007);https://doi.org/10.1111/j.1745-4514.2007.00122.x
O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biol. Chem., 193, 265 (1951);https://doi.org/10.1016/S0021-9258(19)52451-6
S.L. Bonting, eds.: E.E. Bittar, Sodium Potassium Activated Adenosine Triphosphatase and Carbon Transport, In: Membrane and Iron Transport, Wiley-Interscience: London, vol. 1, pp. 257-363 (1970).
R. Domenjoz, Schweiz. Med. Wochenschr., 82, 1023 (1952).
C. Sudhakaran, J. Clin. Diagn. Res., 12, FC05 (2018).
R. Koster, N. Anderson and E.J. Debber, Fed. Proc., 18, 412 (1959).
W. Reanmongkol, S. Subhadhirasakul, J. Kongsang, M. Tanchong and J. Kitti, Pharm. Biol., 38, 68 (2000);https://doi.org/10.1076/1388-0209(200001)3811-BFT068
D. Paglia and W. Valentine, J. Lab. Clin. Med., 70, 158 (1967).
A.K. Sinha, Ann. Biochem., 47, 389 (1972);https://doi.org/10.1016/0003-2697(72)90132-7
S. Marklund and D. Marklund, Eur. J. Biochem., 47, 469 (1974);https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
J. Sedlak and R.H. Lindsay, Anal. Biochem., 25, 192 (1968);https://doi.org/10.1016/0003-2697(68)90092-4
E. Van Kampen and W. Zijlstra, Clin. Chim. Acta, 6, 538 (1961);https://doi.org/10.1016/0009-8981(61)90145-0
S. Reitman and S.A. Frankel, Am. J. Clin. Pathol., 28, 56 (1957);https://doi.org/10.1093/ajcp/28.1.56
J. King, The Dehydrogenase or Oxidoreductatse, Lactate Dehydrogenase, In: Practical Clinical Enzymology, Nostrand Co.: London, pp. 106-115 (1965).
R. Beyaert and W. Fiers, eds.: R. Mire-Sluis and R. Thorpe, Tumor Necrosis Factor and Lymphotoxin, In: Cytokines, Academic Press: San Diego, pp. 335-360 (1998).
K.M. Miranda, M.G. Espey and D.A. Wink, Nitric Oxide, 5, 62 (2001);https://doi.org/10.1006/niox.2000.0319
W.G. Niehaus and B. Samuelsson, Eur. J. Biochem., 6, 126 (1968);https://doi.org/10.1111/j.1432-1033.1968.tb00428.x
G.D. Bancroft and A. Steven, Theory and Practice of Histological Technique, Churchill Livingstone: New York, edn 4, pp. 99-112 (1983).
E. Kolaczkowska, B. Arnold and G. Opdenakker, Immunobiology, 213, 109 (2008);https://doi.org/10.1016/j.imbio.2007.07.005
H. Chu, Q. Tang, H. Huang, W. Hao and X. Wei, Environ. Toxicol. Pharmacol., 41, 159 (2016);https://doi.org/10.1016/j.etap.2015.11.018
S. Nakatsugi, N. Sugimoto and M. Furukawa, Prostaglandins Leukot. Essent. Fatty Acids, 55, 451 (1996);https://doi.org/10.1016/S0952-3278(96)90130-1
S.R. Campelo, M.B. da Silva, J.L.F. Vieira, J.P. da Silva and C.G. Salgado, BMC Res. Notes, 4, 24 (2011);https://doi.org/10.1186/1756-0500-4-24
M.-Z. Zhang, B. Yao, Y. Wang, S. Yang, S. Wang, X. Fan and R.C. Harris, J. Clin. Invest., 125, 4281 (2015);https://doi.org/10.1172/JCI81550
B.J. Orlando, M.J. Lucido and M.G. Malkowski, J. Struct. Biol., 189, 62 (2015);https://doi.org/10.1016/j.jsb.2014.11.005
M.A. Hussein and M.O. Samir, IJPI's J. Med. Chem., 2, 7 (2010).
V. Alagarsamy, K. Chitra, G. Saravanan, V.R. Solomon, M.T. Sulthana and B. Narendhar, Eur. J. Med. Chem., 151, 628 (2018);https://doi.org/10.1016/j.ejmech.2018.03.076
J.E. Hilaly, Z.H. Israili and B. Lyoussi, J. Ethnopharmacol., 91, 43 (2004);https://doi.org/10.1016/j.jep.2003.11.009
F.L. Lanza, D. Fakouhi and A. Rubin, Am. J. Gastroenterol., 84, 633 (1989).
K. Bothara, S. Kadam and V. Shivram, Indian Drugs, 35, 372 (1998).
S. Saxena, M. Verma and A.K. Saxena, Indian J. Chem., 30B, 453 (1991).
V. Alagarsamy, G. Murugananthan and R. Venkateshperumal, Biol. Pharm. Bull., 26, 1711 (2003);https://doi.org/10.1248/bpb.26.1711
V. Alagarsamy, S. Revathi and R. Kalaiselvi, S. Phuvaneshwari, R. Revathi, S. Amuthalakshmi, S. Vijayakumar, S.M. Sivakumar, T. Angayarkanni, M. Sarathadevi, S. Saravanakumar, A. Thangathiruppathy, R. Venkatnarayanan and R. Venkatesaperumal, Indian J. Pharm. Sci., 65, 534 (2003).
M. Zahedifard, F. Lafta Faraj, M. Paydar, C. Yeng Looi, M. Hajrezaei, M. Hasanpourghadi, B. Kamalidehghan, N. Abdul Majid, H. Mohd Ali and M. Ameen Abdulla, Sci. Rep., 5, 11544 (2015);https://doi.org/10.1038/srep11544
M.W. Wahby, G. Yacout, K. Kamal and D. Awad, Beni-Suef J. Basic Appl. Sci., 4, 291 (2015);https://doi.org/10.1016/j.bjbas.2015.11.004
V. Limongelli, M. Bonomi, L. Marinelli, F.L. Gervasio, A. Cavalli, E. Novellino and M. Parrinello, Proc. Natl. Acad. Sci. USA, 107, 5411 (2010);https://doi.org/10.1073/pnas.0913377107
O. Unsal-Tan, K. Ozadali, K. Piskin and A. Balkan, Eur. J. Med. Chem., 57, 59 (2012);https://doi.org/10.1016/j.ejmech.2012.08.046