Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Fluorene Based Alternating Copolymers using Direct Arylation Polymerization
Corresponding Author(s) : Md Lutfor Rahman
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
Many researches have been done to obtain a low band gap and high Polymeric solar cell (PSCs) polymer either by creating new polymer or revising reported polymers from previous studies. In present work, two new copolymers were synthesized through direct arylation polymerization to produce poly(9,9-didodecylfluorene-alt-benzo[c][1,2,5]thiadiazole (P1) and poly(9,9-didodecylfluorene-alt-thieno[3,2-b]thiophene) (P2). The P1 and P2 are donor-accepter copolymers. P1 and P2 were compared to investigate its suitability to be applied in PSCs. The polymers obtained were characterized using FT-IR, NMR and UV-Vis spectroscopy. P1 shows two adsorption bands at λmax1 = 243 nm and λmax2 = 320 nm, whereas P2 also shows two adsorption bands at λmax1 = 243 nm and λmax2 = 427 nm. The optical band gap was calculated, P1 enabled band gap of 3.88 eV while P2 showed band gap of 2.91 eV. This work could be provided an insight to design and synthesize more efficient fluorene-based copolymers as active layer of PSCs in due course.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Etgar, Materials, 6, 445 (2013);https://doi.org/10.3390/ma6020445
- Q. An, F. Zhang, J. Zhang, W. Tang, Z. Deng and B. Hu, Energy Environ. Sci., 9, 281 (2016);https://doi.org/10.1039/C5EE02641E
- X.L. Wong, M.L. Rahman and M.S. Sarjadi, Int. J. Electrochem. Sci., 12, 6315 (2017);https://doi.org/10.20964/2017.07.76
- S.E. Tan, F.H. Anuar, M.S. Sarkar, M.L. Rahman and M.S. Sarjadi, ChemistrySelect, 4, 936 (2019);https://doi.org/10.1002/slct.201801259
- S. Richard, Sustainable Energy, 2, 85 (2014);https://doi.org/10.7569/JSEE.2014.629506
- N. Kannan and D. Vakeesan, Renew. Sustain. Energy Rev., 62, 1092 (2016);https://doi.org/10.1016/j.rser.2016.05.022
- L. Dou, W.H. Chang, J. Gao, C.C. Chen, J. You and Y. Yang, Adv. Mater., 25, 825 (2013);https://doi.org/10.1002/adma.201203827
- J. Kuwabara, Y. Nohara, S.J. Choi, Y. Fujinami, W. Lu, K. Yoshimura, J. Oguma, K. Suenobu and T. Kanbara, Polym. Chem., 4, 947 (2013);https://doi.org/10.1039/C2PY20917A
- C. Lupangu and R.C. Bansal, Renew. Sustain. Energy Rev., 73, 950 (2017);https://doi.org/10.1016/j.rser.2017.02.003
- J.J.R. Arias, L. Crociani, I.T. Soares, I.C. Mota, B.P.S. Santos, R. Valaski and M.D.F.V. Marques, React. Funct. Polym., 144, 104355 (2019);https://doi.org/10.1016/j.reactfunctpolym.2019.104355
- Y. Xu, G. Hai, H. Xu, H. Zhang, Z. Zuo, Q. Zhang, R. Xia, C. Sun, J. Castro-Smirnov, A. Sousaraei, S. Casado, M.R. Osorio, D. Granados, I. Rodriguez and J. Cabanillas-Gonzalez, Adv. Opt. Mater., 6, 1800263 (2018);https://doi.org/10.1002/adom.201800263
- S. Suman, A. Bagui, A. Garg, B. Tyagi, V. Gupta and S.P. Singh, Chem. Commun., 54, 4001 (2018);https://doi.org/10.1039/C7CC08440D
- X. Song, Y. Zhang, Y. Li, F. Li, X. Bao, D. Ding, M. Sun and R. Yang, Macromolecules, 50, 6880 (2017);https://doi.org/10.1021/acs.macromol.7b00998
- S. Suman, A. Bagui, R. Datt, V. Gupta and S.P. Singh, Chem. Commun., 53, 12790 (2017);https://doi.org/10.1039/C7CC08237A
- Y.J. Cheng, S.H. Yang and C.S. Hsu, Chem. Rev., 109, 5868 (2009);https://doi.org/10.1021/cr900182s
- M.S. Sarjadi and A. Iraqi, Polym. Polymer Compos., 24, 703 (2016);https://doi.org/10.1177/096739111602400905
References
L. Etgar, Materials, 6, 445 (2013);https://doi.org/10.3390/ma6020445
Q. An, F. Zhang, J. Zhang, W. Tang, Z. Deng and B. Hu, Energy Environ. Sci., 9, 281 (2016);https://doi.org/10.1039/C5EE02641E
X.L. Wong, M.L. Rahman and M.S. Sarjadi, Int. J. Electrochem. Sci., 12, 6315 (2017);https://doi.org/10.20964/2017.07.76
S.E. Tan, F.H. Anuar, M.S. Sarkar, M.L. Rahman and M.S. Sarjadi, ChemistrySelect, 4, 936 (2019);https://doi.org/10.1002/slct.201801259
S. Richard, Sustainable Energy, 2, 85 (2014);https://doi.org/10.7569/JSEE.2014.629506
N. Kannan and D. Vakeesan, Renew. Sustain. Energy Rev., 62, 1092 (2016);https://doi.org/10.1016/j.rser.2016.05.022
L. Dou, W.H. Chang, J. Gao, C.C. Chen, J. You and Y. Yang, Adv. Mater., 25, 825 (2013);https://doi.org/10.1002/adma.201203827
J. Kuwabara, Y. Nohara, S.J. Choi, Y. Fujinami, W. Lu, K. Yoshimura, J. Oguma, K. Suenobu and T. Kanbara, Polym. Chem., 4, 947 (2013);https://doi.org/10.1039/C2PY20917A
C. Lupangu and R.C. Bansal, Renew. Sustain. Energy Rev., 73, 950 (2017);https://doi.org/10.1016/j.rser.2017.02.003
J.J.R. Arias, L. Crociani, I.T. Soares, I.C. Mota, B.P.S. Santos, R. Valaski and M.D.F.V. Marques, React. Funct. Polym., 144, 104355 (2019);https://doi.org/10.1016/j.reactfunctpolym.2019.104355
Y. Xu, G. Hai, H. Xu, H. Zhang, Z. Zuo, Q. Zhang, R. Xia, C. Sun, J. Castro-Smirnov, A. Sousaraei, S. Casado, M.R. Osorio, D. Granados, I. Rodriguez and J. Cabanillas-Gonzalez, Adv. Opt. Mater., 6, 1800263 (2018);https://doi.org/10.1002/adom.201800263
S. Suman, A. Bagui, A. Garg, B. Tyagi, V. Gupta and S.P. Singh, Chem. Commun., 54, 4001 (2018);https://doi.org/10.1039/C7CC08440D
X. Song, Y. Zhang, Y. Li, F. Li, X. Bao, D. Ding, M. Sun and R. Yang, Macromolecules, 50, 6880 (2017);https://doi.org/10.1021/acs.macromol.7b00998
S. Suman, A. Bagui, R. Datt, V. Gupta and S.P. Singh, Chem. Commun., 53, 12790 (2017);https://doi.org/10.1039/C7CC08237A
Y.J. Cheng, S.H. Yang and C.S. Hsu, Chem. Rev., 109, 5868 (2009);https://doi.org/10.1021/cr900182s
M.S. Sarjadi and A. Iraqi, Polym. Polymer Compos., 24, 703 (2016);https://doi.org/10.1177/096739111602400905