Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
ab initio Study on the π-π Stacking and Halogen Interaction in Chlorobenzene Systems in Comparison to Chloro Substituted Ethenes
Corresponding Author(s) : Bipul Bezbaruah
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
This study emphasizes on the π-π stacking and halogen interaction among chlorobenzene in comparison to the interactions in chloro substituted ethene systems. Studies of the stacked chlorobenzene systems, reveal that the π-π stacking interactions energy of the staggered conformation (dihedral angle 120º) gives much more stable stacked model than that of others. We have also studied the variation of π-π stacking interaction in chloro substituted ethene systems (monochloroethene, dichloroethene, trichloroethene and tetrachloroethene) to compare the change in interaction energy values. Among all the chloro substituted ethene systems, stacked tetrachloroethene monomer gives more stable conformation with more negative interaction energy value.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010);https://doi.org/10.1021/ja100936w
- P. Hobza and K. Muller-Dethlefs, Non-Covalent Interactions: Theory and Experiment, RSC: Cambridge (2009).
- K. Muller-Dethlefs and P. Hobza, Chem. Rev., 100, 143 (2000);https://doi.org/10.1021/cr9900331
- J.W. Steed and J.L. Atwood, Supramolecular Chemistry, Wiley, edn 2 (2009).
- J.S. Murray, K.E. Riley, P. Politzer and T. Clark, Aust. J. Chem., 63, 1598 (2010);https://doi.org/10.1071/CH10259
- G.A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer: Berlin (1991).
- Q. Li, Q. Lin, W. Li, J. Cheng, B. Gong and J. Sun, ChemPhysChem, 9, 2265 (2008);https://doi.org/10.1002/cphc.200800467
- S.J. Grabowski, Theor. Chem. Acc., 132, 1347 (2013);https://doi.org/10.1007/s00214-013-1347-7
- M.D. Esrafili and M. Vakili, Mol. Phys., 112, 2746 (2014);https://doi.org/10.1080/00268976.2014.909057
- L. Albrecht, R.J. Boyd, O. Mó and M. Yáñez, J. Phys. Chem. A, 118, 4205 (2014);https://doi.org/10.1021/jp503229u
- X. Guo, X. An and Q. Li, J. Phys. Chem. A, 119, 3518 (2015);https://doi.org/10.1021/acs.jpca.5b00783
- P. Politzer, P. Lane, M.C. Concha, Y.G. Ma and J.S. Murray, J. Mol. Model., 13, 305 (2007);https://doi.org/10.1007/s00894-006-0154-7
- P. Politzer, J.S. Murray and T. Clark, Phys. Chem. Chem. Phys., 12, 7748 (2010);https://doi.org/10.1039/c004189k
- K.E. Riley, J.S. Murray, J. Fanfrlík, J. Rezác, R.J. Solá, M.C. Concha, F.M. Ramos and P. Politzer, J. Mol. Model., 17, 3309 (2011);https://doi.org/10.1007/s00894-011-1015-6
- K.E. Riley, J.S. Murray, P. Politzer, M.C. Concha and P. Hobza, J. Chem. Theory Comput., 5, 155 (2009);https://doi.org/10.1021/ct8004134
- P. Metrangolo and G. Resnati, Chem. Eur. J., 7, 2511 (2001);https://doi.org/10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T
- G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press: New York (1997).
- M. Fourmigué and P. Batail, Chem. Rev., 104, 5379 (2004);https://doi.org/10.1021/cr030645s
- F. Zordan, L. Brammer and P. Sherwood, J. Am. Chem. Soc., 127, 5979 (2005);https://doi.org/10.1021/ja0435182
- S.C. Nyburg and W. Wong-Ng, Proc. R. Soc. Lond. A Math. Phys. Sci., 367, 29 (1979);https://doi.org/10.1098/rspa.1979.0074
- S.C. Nyburg and C.H. Faerman, Acta Cryst. B, 41, 274 (1985);https://doi.org/10.1107/S0108768185002129
- S.L. Price, A.J. Stone, J. Lucas, R.S. Rowland and A.E. Thornley, J. Am. Chem. Soc., 116, 4910 (1994);https://doi.org/10.1021/ja00090a041
- B. Bankiewicz and M. Palusiak, Struct. Chem., 24, 1297 (2013);https://doi.org/10.1007/s11224-012-0157-1
- M. Palusiak, J. Mol. Struct. THEOCHEM, 945, 89 (2010);https://doi.org/10.1016/j.theochem.2010.01.022
- S.J. Grabowski, J. Phys. Chem. A, 116, 1838 (2012);https://doi.org/10.1021/jp2109303
- T.N. Guru Row, Coord. Chem. Rev., 183, 81 (1999);https://doi.org/10.1016/S0010-8545(98)00184-2
- M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama and H. Suezawa, J. CrystEngComm, 11, 1757 (2009);https://doi.org/10.1039/B902318F
- D.B. Amabilino and J.F. Stoddart, Chem. Rev., 95, 2725 (1995);https://doi.org/10.1021/cr00040a005
- C.A. Hunter and J.K.M. Sanders, J. Am. Chem. Soc., 112, 5525 (1990);https://doi.org/10.1021/ja00170a016
- J.-Y. Wu, H.-Y. Hsu, C.-C. Chan, Y.-S. Wen, C. Tsai and K.-L. Lu, Cryst. Growth Des., 9, 258 (2009);https://doi.org/10.1021/cg8004163
- I. Dance, CrystEngComm, 5, 208 (2003);https://doi.org/10.1039/b304667m
References
E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010);https://doi.org/10.1021/ja100936w
P. Hobza and K. Muller-Dethlefs, Non-Covalent Interactions: Theory and Experiment, RSC: Cambridge (2009).
K. Muller-Dethlefs and P. Hobza, Chem. Rev., 100, 143 (2000);https://doi.org/10.1021/cr9900331
J.W. Steed and J.L. Atwood, Supramolecular Chemistry, Wiley, edn 2 (2009).
J.S. Murray, K.E. Riley, P. Politzer and T. Clark, Aust. J. Chem., 63, 1598 (2010);https://doi.org/10.1071/CH10259
G.A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer: Berlin (1991).
Q. Li, Q. Lin, W. Li, J. Cheng, B. Gong and J. Sun, ChemPhysChem, 9, 2265 (2008);https://doi.org/10.1002/cphc.200800467
S.J. Grabowski, Theor. Chem. Acc., 132, 1347 (2013);https://doi.org/10.1007/s00214-013-1347-7
M.D. Esrafili and M. Vakili, Mol. Phys., 112, 2746 (2014);https://doi.org/10.1080/00268976.2014.909057
L. Albrecht, R.J. Boyd, O. Mó and M. Yáñez, J. Phys. Chem. A, 118, 4205 (2014);https://doi.org/10.1021/jp503229u
X. Guo, X. An and Q. Li, J. Phys. Chem. A, 119, 3518 (2015);https://doi.org/10.1021/acs.jpca.5b00783
P. Politzer, P. Lane, M.C. Concha, Y.G. Ma and J.S. Murray, J. Mol. Model., 13, 305 (2007);https://doi.org/10.1007/s00894-006-0154-7
P. Politzer, J.S. Murray and T. Clark, Phys. Chem. Chem. Phys., 12, 7748 (2010);https://doi.org/10.1039/c004189k
K.E. Riley, J.S. Murray, J. Fanfrlík, J. Rezác, R.J. Solá, M.C. Concha, F.M. Ramos and P. Politzer, J. Mol. Model., 17, 3309 (2011);https://doi.org/10.1007/s00894-011-1015-6
K.E. Riley, J.S. Murray, P. Politzer, M.C. Concha and P. Hobza, J. Chem. Theory Comput., 5, 155 (2009);https://doi.org/10.1021/ct8004134
P. Metrangolo and G. Resnati, Chem. Eur. J., 7, 2511 (2001);https://doi.org/10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T
G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press: New York (1997).
M. Fourmigué and P. Batail, Chem. Rev., 104, 5379 (2004);https://doi.org/10.1021/cr030645s
F. Zordan, L. Brammer and P. Sherwood, J. Am. Chem. Soc., 127, 5979 (2005);https://doi.org/10.1021/ja0435182
S.C. Nyburg and W. Wong-Ng, Proc. R. Soc. Lond. A Math. Phys. Sci., 367, 29 (1979);https://doi.org/10.1098/rspa.1979.0074
S.C. Nyburg and C.H. Faerman, Acta Cryst. B, 41, 274 (1985);https://doi.org/10.1107/S0108768185002129
S.L. Price, A.J. Stone, J. Lucas, R.S. Rowland and A.E. Thornley, J. Am. Chem. Soc., 116, 4910 (1994);https://doi.org/10.1021/ja00090a041
B. Bankiewicz and M. Palusiak, Struct. Chem., 24, 1297 (2013);https://doi.org/10.1007/s11224-012-0157-1
M. Palusiak, J. Mol. Struct. THEOCHEM, 945, 89 (2010);https://doi.org/10.1016/j.theochem.2010.01.022
S.J. Grabowski, J. Phys. Chem. A, 116, 1838 (2012);https://doi.org/10.1021/jp2109303
T.N. Guru Row, Coord. Chem. Rev., 183, 81 (1999);https://doi.org/10.1016/S0010-8545(98)00184-2
M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama and H. Suezawa, J. CrystEngComm, 11, 1757 (2009);https://doi.org/10.1039/B902318F
D.B. Amabilino and J.F. Stoddart, Chem. Rev., 95, 2725 (1995);https://doi.org/10.1021/cr00040a005
C.A. Hunter and J.K.M. Sanders, J. Am. Chem. Soc., 112, 5525 (1990);https://doi.org/10.1021/ja00170a016
J.-Y. Wu, H.-Y. Hsu, C.-C. Chan, Y.-S. Wen, C. Tsai and K.-L. Lu, Cryst. Growth Des., 9, 258 (2009);https://doi.org/10.1021/cg8004163
I. Dance, CrystEngComm, 5, 208 (2003);https://doi.org/10.1039/b304667m