Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Volumetric and Acoustic Properties of D(+) Glucosamine·HCl and L-Lysine·HCl in Aqueous Solutions at Different Temperatures
Corresponding Author(s) : S.S. Dhondge
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
In present work, density and speed of sound of aqueous binary mixtures of biologically important amino acid derivatives namely D(+) glucosamine·HCl and L-lysine·HCl have been measured at three different temperatures i.e. (278.15, 288.15 and 298.15) K and in the concentration range of 0.0-0.2 mol kg-1. Using density and speed of sound data, different thermodynamic and acoustic parameters like apparent molar volume (Vf) and apparent molar isentropic compression (Kf) of solute have been computed at different temperatures. Speed of sound data have also been used to calculate hydration number (nH) of solute. The temperature dependence of the limiting apparent molar volume of solute has been used to calculate thermal expansion coefficient (α*), apparent molar expansivity (E0f) of solute and Hepler’s constant (∂2V0f/∂T2). The final outcome of the study has been discussed in terms of various interactions among solute and solvent molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Von Hipple and T. Schleich, eds.: S. Timasheff and G. Fasman, Structure and Stability of Biological Macromolecules, Marcel Dekker: New York, p. 417 (1969).
- G. Rialdi and R. Biltonen, in: H.A. Skinner (Ed.), International Review of Science, Physical Chemistry, Butterworth: London, Series 2, vol. 10, p. 147 (1975).
- R. Rani, A. Kumar, T. Sharma, T. Sharma and R.K. Bamezai, J. Chem. Thermodyn., 135, 260 (2019);https://doi.org/10.1016/j.jct.2019.03.039
- S. Das and U. Dash, J. Mol. Liq., 236, 283 (2017);https://doi.org/10.1016/j.molliq.2017.04.038
- H. Rodriguez, A. Soto, A. Arce and M. Khoshkbarchi, J. Solution Chem., 32, 53 (2003);https://doi.org/10.1023/A:1022640715229
- A. Kumar, R. Rani, T. Sharma and R.K. Bamezai, J. Mol. Liq., 276, 961 (2019);https://doi.org/10.1016/j.molliq.2018.12.113
- R. Gaba, A. Pal, H. Kumar, D. Sharma and Navjot, J. Mol. Liq., 242, 739 (2017);https://doi.org/10.1016/j.molliq.2017.07.058
- B. Lark, P. Patyar, T. Banipal and N. Kishore, J. Chem. Eng. Data, 49, 553 (2004);https://doi.org/10.1021/je034168m
- T. Banipal, D. Kaur, P. Banipal and G. Singh, J. Chem. Thermodyn., 39, 371 (2007);https://doi.org/10.1016/j.jct.2006.08.003
- N. Malik, A. Khan, S. Naqvi and T. Arfin, J. Mol. Liq., 221, 12 (2016);https://doi.org/10.1016/j.molliq.2016.05.061
- M. Mokhtarpour and H. Shekaari, J. Chem. Thermodyn., 144, 106051 (2020);https://doi.org/10.1016/j.jct.2020.106051
- A. Pal and N. Chauhan, J. Chem. Eng. Data, 56, 1687 (2011);https://doi.org/10.1021/je100857s
- S. Dhondge, D. Deshmukh and L. Paliwal, J. Chem. Thermodyn., 58, 149 (2013);https://doi.org/10.1016/j.jct.2012.10.027
- S. Dhondge, P. Dahasahasra, L. Paliwal and D. Deshmukh, J. Chem. Thermodyn., 76, 16 (2014);https://doi.org/10.1016/j.jct.2014.02.024
- S. Dhondge, P. Shende, L. Paliwal and D. Deshmukh, J. Chem. Thermodyn., 81, 34 (2015);https://doi.org/10.1016/j.jct.2014.09.011
- N. Taulier and T.V. Chalikian, Biochim. Biophys. Acta, 48, 1595 (2002);https://doi.org/10.1016/S0167-4838(01)00334-X
- J. Evans, C. Barnes and T. Lewis, J. Ultrasound Med. Biol., 14, 299 (1988);https://doi.org/10.1016/0301-5629(88)90096-8
- Y. Yasuda, N. Tochio, M. Sakurai and K. Nitta, J. Chem. Eng. Data, 43, 205 (1998);https://doi.org/10.1021/je9701792
- J. Moses, S. Dhondge, L. Paliwal, S. Zodape and P. Shende, J. Chem. Thermodyn., 93, 8 (2016);https://doi.org/10.1016/j.jct.2015.09.020
- S. Dhondge, J. Moses, D. Deshmukh, L. Paliwal, V. Tangde and A. Dhondge, J. Chem. Thermodyn., 105, 217 (2017);https://doi.org/10.1016/j.jct.2016.10.016
- G. Kell, J. Chem. Eng. Data, 12, 66 (1967);https://doi.org/10.1021/je60032a018
- F. Millero, J. Phys. Chem., 74, 356 (1970);https://doi.org/10.1021/j100697a022
- L. Ramesh, S. Dhondge and M. Ray, Indian J. Chem., 38A, 70 (1999).
- V. Del Grosso and C. Mader, J. Acoust. Soc. Am., 52(5B), 1442 (1972);https://doi.org/10.1121/1.1913258
- M. Kaulgud, S. Dhondge and A. Moharil, Indian J. Chem., 35A, 746 (1996).
- J. Desnoyers, Pure Appl. Chem., 54, 1469 (1982);https://doi.org/10.1351/pac198254081469
- A. Dunn, Trans. Faraday Soc., 64, 2951 (1968);https://doi.org/10.1039/TF9686402951
- J. Wawer and J. Krakowiak, J. Mol. Liq., 296, 111765 (2019);https://doi.org/10.1016/j.molliq.2019.111765
- J. Leyendekkers, J. Phys. Chem., 90, 5449 (1986);https://doi.org/10.1021/j100412a110
- S. Dhondge, D. Deshmukh, L. Paliwal and P. Dahasahasra, J. Chem. Thermodyn., 67, 217 (2013);https://doi.org/10.1016/j.jct.2013.08.016
- J.E. Desnoyers and G. Perron, J. Solution Chem., 1, 199 (1972);https://doi.org/10.1007/BF00645101
- A. Nain, R. Pal and R. Sharma, J. Chem. Thermodyn., 43, 603 (2011);https://doi.org/10.1016/j.jct.2010.11.017
- T. Banipal, D. Kaur and P. Banipal, J. Chem. Eng. Data, 49, 1236 (2004);https://doi.org/10.1021/je034209e
- B. Sinha, V. Dakua and M. Roy, J. Chem. Eng. Data, 52, 1768 (2007);https://doi.org/10.1021/je7001418
- F. Millero, Chem. Rev., 71, 147 (1971);https://doi.org/10.1021/cr60270a001
- A. Hakin, A. Copeland, J. Liu, R. Marriott and K. Preuss, J. Chem. Eng. Data, 42, 84 (1997);https://doi.org/10.1021/je9601927
- M. Kikuchi, M. Sakurai and K. Nitta, J. Chem. Eng. Data, 41, 1439 (1996);https://doi.org/10.1021/je00020a045
- L.G. Hepler, Can. J. Chem., 47, 4613 (1969);https://doi.org/10.1139/v69-762
- G. Cabani, E. Conti and Matteoli, J. Solution Chem., 5, 751 (1976);https://doi.org/10.1007/BF00651485
- F. Franks, J. Ravenhill and D. Reid, J. Solution Chem., 1, 3 (1972);https://doi.org/10.1007/BF00648413
- M. Zafarani-Moattar and S. Sarmad, J. Chem. Thermodyn., 42, 1213 (2010);https://doi.org/10.1016/j.jct.2010.04.025
- M. Kaulgud, H. Dole and K. Rao, Indian J. Chem., 16A, 955 (1978).
- A. Passynski, Acta Physicochimica U.R.S.S., 8, 385 (1938).
- A. Burakowski, J. Glinski, Chem. Rev., 112, 2059 (2012);https://doi.org/10.1021/cr2000948
- A. Juszkiewicz, Arch. Acoust., 15, 349 (1990).
References
P. Von Hipple and T. Schleich, eds.: S. Timasheff and G. Fasman, Structure and Stability of Biological Macromolecules, Marcel Dekker: New York, p. 417 (1969).
G. Rialdi and R. Biltonen, in: H.A. Skinner (Ed.), International Review of Science, Physical Chemistry, Butterworth: London, Series 2, vol. 10, p. 147 (1975).
R. Rani, A. Kumar, T. Sharma, T. Sharma and R.K. Bamezai, J. Chem. Thermodyn., 135, 260 (2019);https://doi.org/10.1016/j.jct.2019.03.039
S. Das and U. Dash, J. Mol. Liq., 236, 283 (2017);https://doi.org/10.1016/j.molliq.2017.04.038
H. Rodriguez, A. Soto, A. Arce and M. Khoshkbarchi, J. Solution Chem., 32, 53 (2003);https://doi.org/10.1023/A:1022640715229
A. Kumar, R. Rani, T. Sharma and R.K. Bamezai, J. Mol. Liq., 276, 961 (2019);https://doi.org/10.1016/j.molliq.2018.12.113
R. Gaba, A. Pal, H. Kumar, D. Sharma and Navjot, J. Mol. Liq., 242, 739 (2017);https://doi.org/10.1016/j.molliq.2017.07.058
B. Lark, P. Patyar, T. Banipal and N. Kishore, J. Chem. Eng. Data, 49, 553 (2004);https://doi.org/10.1021/je034168m
T. Banipal, D. Kaur, P. Banipal and G. Singh, J. Chem. Thermodyn., 39, 371 (2007);https://doi.org/10.1016/j.jct.2006.08.003
N. Malik, A. Khan, S. Naqvi and T. Arfin, J. Mol. Liq., 221, 12 (2016);https://doi.org/10.1016/j.molliq.2016.05.061
M. Mokhtarpour and H. Shekaari, J. Chem. Thermodyn., 144, 106051 (2020);https://doi.org/10.1016/j.jct.2020.106051
A. Pal and N. Chauhan, J. Chem. Eng. Data, 56, 1687 (2011);https://doi.org/10.1021/je100857s
S. Dhondge, D. Deshmukh and L. Paliwal, J. Chem. Thermodyn., 58, 149 (2013);https://doi.org/10.1016/j.jct.2012.10.027
S. Dhondge, P. Dahasahasra, L. Paliwal and D. Deshmukh, J. Chem. Thermodyn., 76, 16 (2014);https://doi.org/10.1016/j.jct.2014.02.024
S. Dhondge, P. Shende, L. Paliwal and D. Deshmukh, J. Chem. Thermodyn., 81, 34 (2015);https://doi.org/10.1016/j.jct.2014.09.011
N. Taulier and T.V. Chalikian, Biochim. Biophys. Acta, 48, 1595 (2002);https://doi.org/10.1016/S0167-4838(01)00334-X
J. Evans, C. Barnes and T. Lewis, J. Ultrasound Med. Biol., 14, 299 (1988);https://doi.org/10.1016/0301-5629(88)90096-8
Y. Yasuda, N. Tochio, M. Sakurai and K. Nitta, J. Chem. Eng. Data, 43, 205 (1998);https://doi.org/10.1021/je9701792
J. Moses, S. Dhondge, L. Paliwal, S. Zodape and P. Shende, J. Chem. Thermodyn., 93, 8 (2016);https://doi.org/10.1016/j.jct.2015.09.020
S. Dhondge, J. Moses, D. Deshmukh, L. Paliwal, V. Tangde and A. Dhondge, J. Chem. Thermodyn., 105, 217 (2017);https://doi.org/10.1016/j.jct.2016.10.016
G. Kell, J. Chem. Eng. Data, 12, 66 (1967);https://doi.org/10.1021/je60032a018
F. Millero, J. Phys. Chem., 74, 356 (1970);https://doi.org/10.1021/j100697a022
L. Ramesh, S. Dhondge and M. Ray, Indian J. Chem., 38A, 70 (1999).
V. Del Grosso and C. Mader, J. Acoust. Soc. Am., 52(5B), 1442 (1972);https://doi.org/10.1121/1.1913258
M. Kaulgud, S. Dhondge and A. Moharil, Indian J. Chem., 35A, 746 (1996).
J. Desnoyers, Pure Appl. Chem., 54, 1469 (1982);https://doi.org/10.1351/pac198254081469
A. Dunn, Trans. Faraday Soc., 64, 2951 (1968);https://doi.org/10.1039/TF9686402951
J. Wawer and J. Krakowiak, J. Mol. Liq., 296, 111765 (2019);https://doi.org/10.1016/j.molliq.2019.111765
J. Leyendekkers, J. Phys. Chem., 90, 5449 (1986);https://doi.org/10.1021/j100412a110
S. Dhondge, D. Deshmukh, L. Paliwal and P. Dahasahasra, J. Chem. Thermodyn., 67, 217 (2013);https://doi.org/10.1016/j.jct.2013.08.016
J.E. Desnoyers and G. Perron, J. Solution Chem., 1, 199 (1972);https://doi.org/10.1007/BF00645101
A. Nain, R. Pal and R. Sharma, J. Chem. Thermodyn., 43, 603 (2011);https://doi.org/10.1016/j.jct.2010.11.017
T. Banipal, D. Kaur and P. Banipal, J. Chem. Eng. Data, 49, 1236 (2004);https://doi.org/10.1021/je034209e
B. Sinha, V. Dakua and M. Roy, J. Chem. Eng. Data, 52, 1768 (2007);https://doi.org/10.1021/je7001418
F. Millero, Chem. Rev., 71, 147 (1971);https://doi.org/10.1021/cr60270a001
A. Hakin, A. Copeland, J. Liu, R. Marriott and K. Preuss, J. Chem. Eng. Data, 42, 84 (1997);https://doi.org/10.1021/je9601927
M. Kikuchi, M. Sakurai and K. Nitta, J. Chem. Eng. Data, 41, 1439 (1996);https://doi.org/10.1021/je00020a045
L.G. Hepler, Can. J. Chem., 47, 4613 (1969);https://doi.org/10.1139/v69-762
G. Cabani, E. Conti and Matteoli, J. Solution Chem., 5, 751 (1976);https://doi.org/10.1007/BF00651485
F. Franks, J. Ravenhill and D. Reid, J. Solution Chem., 1, 3 (1972);https://doi.org/10.1007/BF00648413
M. Zafarani-Moattar and S. Sarmad, J. Chem. Thermodyn., 42, 1213 (2010);https://doi.org/10.1016/j.jct.2010.04.025
M. Kaulgud, H. Dole and K. Rao, Indian J. Chem., 16A, 955 (1978).
A. Passynski, Acta Physicochimica U.R.S.S., 8, 385 (1938).
A. Burakowski, J. Glinski, Chem. Rev., 112, 2059 (2012);https://doi.org/10.1021/cr2000948
A. Juszkiewicz, Arch. Acoust., 15, 349 (1990).