Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Calcium Alginate Beads Doped with Nano-ZrO2 and Activated Carbon of Annona reticulate Plant as an Effective Adsorbent for Water Remediation of Chromium(VI)
Corresponding Author(s) : Kunta Ravindhranath
Asian Journal of Chemistry,
Vol. 33 No. 2 (2021): Vol 33 Issue 2
Abstract
An activated carbon produced from stems of Annona reticulate plant (SACAR) by conc. H2SO4 digestion, is observed to have strong affinity for toxic Cr(VI) ions. Its adsorptivity for Cr(VI) ions was enhanced by admixing it with ‘nano-ZrO2’ (Zr-SACAR)-synthesized adopting green methods. For ensuring easy filtration, the ‘active carbon + nanoparticle composite’ was immobilized in calcium alginate beads (Zr-SACAR-Ca). Optimum extraction conditions for these three adsorbents for the removal of Cr(VI) ions from water were investigated. The adsorption capacities were found to be 92.2 mg/g for SACAR; 109.83 mg/g for Zr-SACAR and 119.34 mg/g for Zr-SACAR-Ca. The sorption nature was characterized by XRD, FTIR, FESEM and EDX studies. The sorption mechanism was investigated using various isotherm models. Thermodynamic studies revealed the endothermic and spontaneous nature of sorption. The kinetics of adsorption was well defined by the pseudo-second-order model. The spent adsorbent are regenerated and reused until six cycles with marginal decrease in Cr-adsorptivity. The adsorbents developed are effectively applied in the treatment of polluted water samples collected from Ethiopia.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Oliveira, J. Botany, 2012, 375843 (2012);https://doi.org/10.1155/2012/375843
- A. Zhitkovich, Chem. Res. Toxicol., 24, 1617 (2011);https://doi.org/10.1021/tx200251t
- E. Parameswari, A. Lakshmanan and T. Thilagavathi, J. Basic Appl. Sci., 3, 1363 (2009).
- M. Nur-E-Alam, M.A. Sayid Mia, F. Ahmad and M.M. Rahman, Appl. Water Sci., 10, 205 (2020);https://doi.org/10.1007/s13201-020-01286-0
- A. Esmaeili, A. Mesdaghinia and R. Vazirineja, Am. J. Appl. Sci., 2, 1471 (2009).
- S.S. Chen, C.Y. Cheng, C.W. Li, P.H. Chai and Y.-M. Chang, J. Hazard. Mater., 142, 362 (2007);https://doi.org/10.1016/j.jhazmat.2006.08.029
- S.K. Verma, V. Khandegar and A.K. Saroha, J. Hazard. Toxic Radioact. Waste, 17, 146 (2013);https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170
- S.A. Cavaco, S. Fernandes, M.M. Quina and L.M. Ferreira, J. Hazard. Mater., 144, 634 (2007);https://doi.org/10.1016/j.jhazmat.2007.01.087
- G.V. Krishna Mohan, A. Naga Babu, K. Kalpana and K. Ravindhranath, Int. J. Environ. Sci. Technol., 16, 101 (2019);https://doi.org/10.1007/s13762-017-1593-7
- S. Ravulapalli and R. Kunta, Water Sci. Technol., 78, 1377 (2018);https://doi.org/10.2166/wst.2018.413
- M.T. Ahmed, S. Taha, T. Chaabane, D. Akretche, R. Maachi and G. Dorange, Desalination, 200, 419 (2006);https://doi.org/10.1016/j.desal.2006.03.354
- P.K. Meghana, K.V. Pravalika, P.J. Sriram and K. Ravindhranath, Asian J. Chem., 31, 1327 (2019);https://doi.org/10.14233/ajchem.2019.21760
- Y.H. Rao and K. Ravindhranath, Rasayan J. Chem., 10, 1104 (2017);https://doi.org/10.7324/RJC.2017.1041829
- A.N. Babu and G.K. Mohan, Int. J. ChemTech Res., 9, 506 (2016).
- S. Ravulapalli and R. Kunta, J. Fluorine Chem., 193, 58 (2017);https://doi.org/10.1016/j.jfluchem.2016.11.013
- S. Ravulapalli and K. Ravindhranath, J. Taiwan Inst. Chem. Eng., 101, 50 (2019);https://doi.org/10.1016/j.jtice.2019.04.034
- A. Naga Babu, D.S. Reddy, G.S. Kumar, K. Ravindhranath and G.V. Krishna Mohan, J. Environ. Manage., 218, 602 (2018);https://doi.org/10.1016/j.jenvman.2018.04.091
- S. Ravulapalli and K. Ravindhranath, J. Anal. Methods Chem., 2017, Article ID 3610878 (2017);https://doi.org/10.1155/2017/3610878
- W.K. Biftu, K. Ravindhranath and M. Ramamoorty, Nanotechnol. Environ. Eng., 5, 12 (2020);https://doi.org/10.1007/s41204-020-00076-y
- K. Ravindhranath and M. Ramamoorty, Orient. J. Chem., 33, 1603 (2017);https://doi.org/10.13005/ojc/330403
- K. Ravindhranath and R. Mylavarapu, Res. J. Chem. Environ., 21, 42 (2017).
- N. Savage and M.S. Diallo, J. Nanopart. Res., 7, 331 (2005);https://doi.org/10.1007/s11051-005-7523-5
- B. Qiu, H. Gu, X. Yan, J. Guo, Y. Wang, D. Sun, Q. Wang, M. Khan, X. Zhang, B.L. Weeks, D.P. Young, Z. Guo and S. Wei, J. Mater. Chem. A Mater. Energy Sustain., 2, 17454 (2014);https://doi.org/10.1039/C4TA04040F
- I. Ali, Chem. Rev., 112, 5073 (2012);https://doi.org/10.1021/cr300133d
- A.I. Vogel, Text-Book of Quantitative Inorganic Analysis including Elementary Instrumental Analysis, Longmans, Green and Co., Ltd., London (1961).
- W.K. Biftu and K. Ravindhranath, Water Sci. Technol., 81, 2617 (2020);https://doi.org/10.2166/wst.2020.318
- R.K. Trivedy, Environmental Publications, Karad, India, edn 2 (1995).
- C. Fan and Y. Zhang, J. Geochem. Explor., 188, 95 (2018);https://doi.org/10.1016/j.gexplo.2018.01.020
- K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti and V.C. Almeida, Chem. Eng. J., 286, 476 (2016);https://doi.org/10.1016/j.cej.2015.10.099
- C.E. Rodrigues, K.K. Aracava and F.N. Abreu, Int. J. Food Sci. Technol., 45, 2407 (2010);https://doi.org/10.1111/j.1365-2621.2010.02417.x
- W.S. Wan Ngah and M.A.K.M. Hanafiah, Biochem. Eng. J., 39, 521 (2008);https://doi.org/10.1016/j.bej.2007.11.006
- C. Sun, C. Li, C. Wang, R. Qu, Y. Niu and H. Geng, Chem. Eng. J., 200-202, 291 (2012);https://doi.org/10.1016/j.cej.2012.06.007
- L. Borah, M. Goswami and P. Phukan, J. Environ. Chem. Eng., 3, 1018 (2015);https://doi.org/10.1016/j.jece.2015.02.013
- H.M.F. Freundlich, J. Phys. Chem., 57, 385 (1906).
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918);https://doi.org/10.1021/ja02242a004
- M. J. Temkin and V.Pyzhev, Acta Physicochimica URSS, 12, 217 (1940).
- M.M. Dubinin, Dokl. Akad. Nauk SSSR, 55, 327 (1947).
- J.F. Corbett, J. Chem. Educ., 49, 663 (1972);https://doi.org/10.1021/ed049p663
- Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999);https://doi.org/10.1016/S0032-9592(98)00112-5
- Y.S. Ho, J.C.Y. Ng and G. McKay, Sep. Purif. Methods, 29, 189 (2000);https://doi.org/10.1081/SPM-100100009
- S.K. Lagergren, Sven. Vetenskapsakad. Handingarl, 24, 1 (1898).
- Z.N. Huang, X.L. Wang and D.S. Yang, Water Sci. Eng., 8, 226 (2015);https://doi.org/10.1016/j.wse.2015.01.009
- M.A. Atieh, Procedia Environ. Sci., 4, 281 (2011);https://doi.org/10.1016/j.proenv.2011.03.033
- Y.W. Cui, J. Li, Z.F. Du and Y.Z. Peng, PLoS One, 11, (2016);https://doi.org/10.1371/journal.pone.0161780
- P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J.X. Zhu and H. He, J. Hazard. Mater., 173, 614 (2010);https://doi.org/10.1016/j.jhazmat.2009.08.129
- R. Fu, X. Zhang, Z. Xu, X. Guo, D. Bi and W. Zhang, Separ. Purif. Tech., 174, 362 (2017);https://doi.org/10.1016/j.seppur.2016.10.058
- J. Yu, C. Jiang, Q. Guan, P. Ning, J. Gu, Q. Chen, J. Zhang and R. Miao, Chemosphere, 195, 632 (2018);https://doi.org/10.1016/j.chemosphere.2017.12.128
- R. Nithya, T. Gomathi, P.N. Sudha, J. Venkatesan, S. Anil and S.K. Kim, Int. J. Biol. Macromol., 87, 545 (2016);https://doi.org/10.1016/j.ijbiomac.2016.02.076
- X. Lv, X. Xue, G. Jiang, D. Wu, T. Sheng, H. Zhou and X. Xu, J. Colloid Interface Sci., 417, 51 (2014);https://doi.org/10.1016/j.jcis.2013.11.044
- X. Lv, J. Xu, G. Jiang, J. Tang and X. Xu, J. Colloid Interface Sci., 369, 460 (2012);https://doi.org/10.1016/j.jcis.2011.11.049
- S.E. Gomez-Gonzalez, G.G. Carbajal-Arizaga, R. Manriquez-Gonzalez, W. De la Cruz-Hernandez and S. Gomez-Salazar, Mater. Res. Bull., 59, 394 (2014);https://doi.org/10.1016/j.materresbull.2014.07.035
References
H. Oliveira, J. Botany, 2012, 375843 (2012);https://doi.org/10.1155/2012/375843
A. Zhitkovich, Chem. Res. Toxicol., 24, 1617 (2011);https://doi.org/10.1021/tx200251t
E. Parameswari, A. Lakshmanan and T. Thilagavathi, J. Basic Appl. Sci., 3, 1363 (2009).
M. Nur-E-Alam, M.A. Sayid Mia, F. Ahmad and M.M. Rahman, Appl. Water Sci., 10, 205 (2020);https://doi.org/10.1007/s13201-020-01286-0
A. Esmaeili, A. Mesdaghinia and R. Vazirineja, Am. J. Appl. Sci., 2, 1471 (2009).
S.S. Chen, C.Y. Cheng, C.W. Li, P.H. Chai and Y.-M. Chang, J. Hazard. Mater., 142, 362 (2007);https://doi.org/10.1016/j.jhazmat.2006.08.029
S.K. Verma, V. Khandegar and A.K. Saroha, J. Hazard. Toxic Radioact. Waste, 17, 146 (2013);https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170
S.A. Cavaco, S. Fernandes, M.M. Quina and L.M. Ferreira, J. Hazard. Mater., 144, 634 (2007);https://doi.org/10.1016/j.jhazmat.2007.01.087
G.V. Krishna Mohan, A. Naga Babu, K. Kalpana and K. Ravindhranath, Int. J. Environ. Sci. Technol., 16, 101 (2019);https://doi.org/10.1007/s13762-017-1593-7
S. Ravulapalli and R. Kunta, Water Sci. Technol., 78, 1377 (2018);https://doi.org/10.2166/wst.2018.413
M.T. Ahmed, S. Taha, T. Chaabane, D. Akretche, R. Maachi and G. Dorange, Desalination, 200, 419 (2006);https://doi.org/10.1016/j.desal.2006.03.354
P.K. Meghana, K.V. Pravalika, P.J. Sriram and K. Ravindhranath, Asian J. Chem., 31, 1327 (2019);https://doi.org/10.14233/ajchem.2019.21760
Y.H. Rao and K. Ravindhranath, Rasayan J. Chem., 10, 1104 (2017);https://doi.org/10.7324/RJC.2017.1041829
A.N. Babu and G.K. Mohan, Int. J. ChemTech Res., 9, 506 (2016).
S. Ravulapalli and R. Kunta, J. Fluorine Chem., 193, 58 (2017);https://doi.org/10.1016/j.jfluchem.2016.11.013
S. Ravulapalli and K. Ravindhranath, J. Taiwan Inst. Chem. Eng., 101, 50 (2019);https://doi.org/10.1016/j.jtice.2019.04.034
A. Naga Babu, D.S. Reddy, G.S. Kumar, K. Ravindhranath and G.V. Krishna Mohan, J. Environ. Manage., 218, 602 (2018);https://doi.org/10.1016/j.jenvman.2018.04.091
S. Ravulapalli and K. Ravindhranath, J. Anal. Methods Chem., 2017, Article ID 3610878 (2017);https://doi.org/10.1155/2017/3610878
W.K. Biftu, K. Ravindhranath and M. Ramamoorty, Nanotechnol. Environ. Eng., 5, 12 (2020);https://doi.org/10.1007/s41204-020-00076-y
K. Ravindhranath and M. Ramamoorty, Orient. J. Chem., 33, 1603 (2017);https://doi.org/10.13005/ojc/330403
K. Ravindhranath and R. Mylavarapu, Res. J. Chem. Environ., 21, 42 (2017).
N. Savage and M.S. Diallo, J. Nanopart. Res., 7, 331 (2005);https://doi.org/10.1007/s11051-005-7523-5
B. Qiu, H. Gu, X. Yan, J. Guo, Y. Wang, D. Sun, Q. Wang, M. Khan, X. Zhang, B.L. Weeks, D.P. Young, Z. Guo and S. Wei, J. Mater. Chem. A Mater. Energy Sustain., 2, 17454 (2014);https://doi.org/10.1039/C4TA04040F
I. Ali, Chem. Rev., 112, 5073 (2012);https://doi.org/10.1021/cr300133d
A.I. Vogel, Text-Book of Quantitative Inorganic Analysis including Elementary Instrumental Analysis, Longmans, Green and Co., Ltd., London (1961).
W.K. Biftu and K. Ravindhranath, Water Sci. Technol., 81, 2617 (2020);https://doi.org/10.2166/wst.2020.318
R.K. Trivedy, Environmental Publications, Karad, India, edn 2 (1995).
C. Fan and Y. Zhang, J. Geochem. Explor., 188, 95 (2018);https://doi.org/10.1016/j.gexplo.2018.01.020
K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti and V.C. Almeida, Chem. Eng. J., 286, 476 (2016);https://doi.org/10.1016/j.cej.2015.10.099
C.E. Rodrigues, K.K. Aracava and F.N. Abreu, Int. J. Food Sci. Technol., 45, 2407 (2010);https://doi.org/10.1111/j.1365-2621.2010.02417.x
W.S. Wan Ngah and M.A.K.M. Hanafiah, Biochem. Eng. J., 39, 521 (2008);https://doi.org/10.1016/j.bej.2007.11.006
C. Sun, C. Li, C. Wang, R. Qu, Y. Niu and H. Geng, Chem. Eng. J., 200-202, 291 (2012);https://doi.org/10.1016/j.cej.2012.06.007
L. Borah, M. Goswami and P. Phukan, J. Environ. Chem. Eng., 3, 1018 (2015);https://doi.org/10.1016/j.jece.2015.02.013
H.M.F. Freundlich, J. Phys. Chem., 57, 385 (1906).
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918);https://doi.org/10.1021/ja02242a004
M. J. Temkin and V.Pyzhev, Acta Physicochimica URSS, 12, 217 (1940).
M.M. Dubinin, Dokl. Akad. Nauk SSSR, 55, 327 (1947).
J.F. Corbett, J. Chem. Educ., 49, 663 (1972);https://doi.org/10.1021/ed049p663
Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999);https://doi.org/10.1016/S0032-9592(98)00112-5
Y.S. Ho, J.C.Y. Ng and G. McKay, Sep. Purif. Methods, 29, 189 (2000);https://doi.org/10.1081/SPM-100100009
S.K. Lagergren, Sven. Vetenskapsakad. Handingarl, 24, 1 (1898).
Z.N. Huang, X.L. Wang and D.S. Yang, Water Sci. Eng., 8, 226 (2015);https://doi.org/10.1016/j.wse.2015.01.009
M.A. Atieh, Procedia Environ. Sci., 4, 281 (2011);https://doi.org/10.1016/j.proenv.2011.03.033
Y.W. Cui, J. Li, Z.F. Du and Y.Z. Peng, PLoS One, 11, (2016);https://doi.org/10.1371/journal.pone.0161780
P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J.X. Zhu and H. He, J. Hazard. Mater., 173, 614 (2010);https://doi.org/10.1016/j.jhazmat.2009.08.129
R. Fu, X. Zhang, Z. Xu, X. Guo, D. Bi and W. Zhang, Separ. Purif. Tech., 174, 362 (2017);https://doi.org/10.1016/j.seppur.2016.10.058
J. Yu, C. Jiang, Q. Guan, P. Ning, J. Gu, Q. Chen, J. Zhang and R. Miao, Chemosphere, 195, 632 (2018);https://doi.org/10.1016/j.chemosphere.2017.12.128
R. Nithya, T. Gomathi, P.N. Sudha, J. Venkatesan, S. Anil and S.K. Kim, Int. J. Biol. Macromol., 87, 545 (2016);https://doi.org/10.1016/j.ijbiomac.2016.02.076
X. Lv, X. Xue, G. Jiang, D. Wu, T. Sheng, H. Zhou and X. Xu, J. Colloid Interface Sci., 417, 51 (2014);https://doi.org/10.1016/j.jcis.2013.11.044
X. Lv, J. Xu, G. Jiang, J. Tang and X. Xu, J. Colloid Interface Sci., 369, 460 (2012);https://doi.org/10.1016/j.jcis.2011.11.049
S.E. Gomez-Gonzalez, G.G. Carbajal-Arizaga, R. Manriquez-Gonzalez, W. De la Cruz-Hernandez and S. Gomez-Salazar, Mater. Res. Bull., 59, 394 (2014);https://doi.org/10.1016/j.materresbull.2014.07.035