Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Activity of Nickel Doped CoO Nanocomposite for the Degradation of Azure A Dye
Corresponding Author(s) : Nirmal Singh
Asian Journal of Chemistry,
Vol. 33 No. 1 (2021): Vol 33 Issue 1
Abstract
Nanocrystalline cobalt(II) oxide doped with nickel was prepared using the sol-gel method and employed as a photocatalyst for azure A dye degradation under visible light. The prepared photocatalyst was analyzed using energy-dispersive X-ray (EDX) spectroscopy, field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The photocatalytic activity of Ni-doped CoO under different working parameters, like concentration, pH, dosage (Ni-doped and undoped CoO), light intensity for the degradation of azure A dye was also optimzed. It was observed that the dye degradation rate improved after doping. Approximately 76% and 85% of azure A dye was degraded within 90 min through undoped and Ni-doped CoO, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Gusain, K. Gupta, P. Joshi and O.P. Khatri, Adv. Colloid Interface Sci., 272, 102009 (2019); https://doi.org/10.1016/j.cis.2019.102009
- N.F. Gray, Water Technology: An Introduction for Environmental Scientists and Engineers, Elsevier Science & Technology Books: Amsterdam, The Netherlands, edn 2 (2005).
- S.D. Lin, Water and Wastewater Calculations Manual, McGraw-Hill Companies, Inc.: New York, USA, edn 2 (2007).
- X.Y. Xue, R. Cheng, L. Shi, Z. Ma and X. Zheng, Environ. Chem.Lett., 15, 23 (2017); https://doi.org/10.1007/s10311-016-0595-x
- S.H.S. Chan, T. Yeong Wu, J.C. Juan and C.Y. Teh, J. Chem. Technol. Biotechnol., 86, 1130 (2011); https://doi.org/10.1002/jctb.2636
- G. Mamba and A. Mishra, Catalysts, 6, 79 (2016); https://doi.org/10.3390/catal6060079
- A. Gupta, J.R. Saurav and S. Bhattacharya, RSC Adv., 5, 71472 (2015); https://doi.org/10.1039/C5RA10456D
- U.I. Gaya and A.H. Abdullah, J. Photochem. Photobiol. Photochem.Rev., 9, 1 (2008); https://doi.org/10.1016/j.jphotochemrev.2007.12.003
- G. Wang, Z. Liu and X. Liu, Chemistry Bull., 76, 689 (2013) (In Chinese).
- H. Khojasteh, M. Salavati-Niasari and S. Mortazavi-Derazkola, J. Mater.Sci. Mater. Electron., 27, 3599 (2016); https://doi.org/10.1007/s10854-015-4197-3
- M.P.B. Vega, M. Hinojosa-Reyes, A. Hernández-Ramírez, J.L.G. Mar, V. Rodríguez-González and L. Hinojosa-Reyes, J. Sol-Gel Sci. Technol.,85, 723 (2018); https://doi.org/10.1007/s10971-018-4579-0
- S. Farhadi, M. Javanmard and G. Nadri, Acta Chim. Slov., 63, 335 (2016); https://doi.org/10.17344/acsi.2016.2305
- Y. Li and N. Chopra, J. Catal., 329, 514 (2015); https://doi.org/10.1016/j.jcat.2015.06.015
- C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly and D. Banerjee, Appl. Surf. Sci., 392, 540 (2017); https://doi.org/10.1016/j.apsusc.2016.09.063
- T.A. Sedneva, M.L. Belikov, E.P. Lokshin and A.T. Belyaevskii, Theor.Found. Chem. Eng., 50, 498 (2016); https://doi.org/10.1134/S0040579516040278
- K. Subramanyam, N. Sreelekha, D. Amaranatha Reddy, G. Murali, K. Rahul Varma and R.P. Vijayalakshmi, Solid State Sci., 65, 68 (2017); https://doi.org/10.1016/j.solidstatesciences.2017.01.008
- K. Santhi, C. Rani and S. Karuppuchamy, J. Mater. Sci. Mater. Electron.,27, 5033 (2016); https://doi.org/10.1007/s10854-016-4390-z
- N. Tharayil, R. Raveendran, A. Vaidyan and P. Chithra, Indian J. Eng.Mater. Sci., 15, 489 (2008).
- N. Singh, M. Jangid, N. Shorgar and P. Tak, Res. J. Chem. Environ., (2020) (in press).
- R.P. Purnima, P. Tak and S. Benjamin, Sci. Rev. Chem. Commun., 6, 19(2016).
- P. Rathore, R. Ameta and S. Sharma, J. Textile Sci. Technol., 1, 118(2015); https://doi.org/10.4236/jtst.2015.13013
- S. Gupta, P. Tak, R. Ameta and S. Benjamin, J. Adv. Chem. Sci., 1, 38 (2015).
- A. Muneer, R.Q. AL-Shemary and E.T. Kareem, J. Int. Pharm. Res., 45,123 (2015).
- B. Pare, D. Singh, V.S. Solanki, P. Gupta and S. Jonnalagadda, Int. J.Chem., 3, 351 (2014).
References
R. Gusain, K. Gupta, P. Joshi and O.P. Khatri, Adv. Colloid Interface Sci., 272, 102009 (2019); https://doi.org/10.1016/j.cis.2019.102009
N.F. Gray, Water Technology: An Introduction for Environmental Scientists and Engineers, Elsevier Science & Technology Books: Amsterdam, The Netherlands, edn 2 (2005).
S.D. Lin, Water and Wastewater Calculations Manual, McGraw-Hill Companies, Inc.: New York, USA, edn 2 (2007).
X.Y. Xue, R. Cheng, L. Shi, Z. Ma and X. Zheng, Environ. Chem.Lett., 15, 23 (2017); https://doi.org/10.1007/s10311-016-0595-x
S.H.S. Chan, T. Yeong Wu, J.C. Juan and C.Y. Teh, J. Chem. Technol. Biotechnol., 86, 1130 (2011); https://doi.org/10.1002/jctb.2636
G. Mamba and A. Mishra, Catalysts, 6, 79 (2016); https://doi.org/10.3390/catal6060079
A. Gupta, J.R. Saurav and S. Bhattacharya, RSC Adv., 5, 71472 (2015); https://doi.org/10.1039/C5RA10456D
U.I. Gaya and A.H. Abdullah, J. Photochem. Photobiol. Photochem.Rev., 9, 1 (2008); https://doi.org/10.1016/j.jphotochemrev.2007.12.003
G. Wang, Z. Liu and X. Liu, Chemistry Bull., 76, 689 (2013) (In Chinese).
H. Khojasteh, M. Salavati-Niasari and S. Mortazavi-Derazkola, J. Mater.Sci. Mater. Electron., 27, 3599 (2016); https://doi.org/10.1007/s10854-015-4197-3
M.P.B. Vega, M. Hinojosa-Reyes, A. Hernández-Ramírez, J.L.G. Mar, V. Rodríguez-González and L. Hinojosa-Reyes, J. Sol-Gel Sci. Technol.,85, 723 (2018); https://doi.org/10.1007/s10971-018-4579-0
S. Farhadi, M. Javanmard and G. Nadri, Acta Chim. Slov., 63, 335 (2016); https://doi.org/10.17344/acsi.2016.2305
Y. Li and N. Chopra, J. Catal., 329, 514 (2015); https://doi.org/10.1016/j.jcat.2015.06.015
C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly and D. Banerjee, Appl. Surf. Sci., 392, 540 (2017); https://doi.org/10.1016/j.apsusc.2016.09.063
T.A. Sedneva, M.L. Belikov, E.P. Lokshin and A.T. Belyaevskii, Theor.Found. Chem. Eng., 50, 498 (2016); https://doi.org/10.1134/S0040579516040278
K. Subramanyam, N. Sreelekha, D. Amaranatha Reddy, G. Murali, K. Rahul Varma and R.P. Vijayalakshmi, Solid State Sci., 65, 68 (2017); https://doi.org/10.1016/j.solidstatesciences.2017.01.008
K. Santhi, C. Rani and S. Karuppuchamy, J. Mater. Sci. Mater. Electron.,27, 5033 (2016); https://doi.org/10.1007/s10854-016-4390-z
N. Tharayil, R. Raveendran, A. Vaidyan and P. Chithra, Indian J. Eng.Mater. Sci., 15, 489 (2008).
N. Singh, M. Jangid, N. Shorgar and P. Tak, Res. J. Chem. Environ., (2020) (in press).
R.P. Purnima, P. Tak and S. Benjamin, Sci. Rev. Chem. Commun., 6, 19(2016).
P. Rathore, R. Ameta and S. Sharma, J. Textile Sci. Technol., 1, 118(2015); https://doi.org/10.4236/jtst.2015.13013
S. Gupta, P. Tak, R. Ameta and S. Benjamin, J. Adv. Chem. Sci., 1, 38 (2015).
A. Muneer, R.Q. AL-Shemary and E.T. Kareem, J. Int. Pharm. Res., 45,123 (2015).
B. Pare, D. Singh, V.S. Solanki, P. Gupta and S. Jonnalagadda, Int. J.Chem., 3, 351 (2014).