Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Vibrational, Quantum Chemical Calculations, Thermal and Antimicrobial Studies on Sulphate Salt of 3-Nitroaniline
Corresponding Author(s) : S. Thangarasu
Asian Journal of Chemistry,
Vol. 33 No. 1 (2021): Vol 33 Issue 1
Abstract
In this work, bis(3-nitroanilinium) sulfate (3NASU) has been synthesized and crystallized successfully by solution growth combined with solvent evaporation technique. The studied salt, 3NASU molecular structure has been optimized with density functional theory (DFT) using B3LYP function and Hartree-Fock method with a 6-311++G(d,p) basis set. The geometrical parameters of 3NASU have been analyzed. The computed vibrational spectra were compared with experimental result which show appreciable agreement. Thermal stability of the crystal was analyzed with TGA/DTA and the melting points of the salt identified at 210 ºC. HOMO-LUMO energy calculations have shown the charge transfer within the molecule. The possible pharmaceutical/biological activity of the salts confirmed by the frontier molecular orbital (FMO) analysis have lower band gap value. The antimicrobial activity of grown crystals were tested against certain potentially threatening microbes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Krishnakumar and R. Nagalakshmi, Cryst. Growth Des., 8, 3882 (2008); https://doi.org/10.1021/cg070548i
- D.M. Bishop, B. Champagne and B. Kirtman, J. Chem. Phys., 109, 9987 (1998); https://doi.org/10.1063/1.477665
- H. Reis, M.G. Papadopoulos, P. Calaminici, K. Jug and A.M. Köster, Chem. Phys., 261, 359 (2000); https://doi.org/10.1016/S0301-0104(00)00305-0
- A.K. Jain, S.C. Mehta and N.M. Shrivastava, Indian J. Pharm., 37,395 (2005); https://doi.org/10.4103/0253-7613.19078
- V. Siva, A. Shameem, A. Murugan, S. Athimoolam, M. Suresh and S.A. Bahadur, Chem. Data Coll., 24, 100281 (2019); https://doi.org/10.1016/j.cdc.2019.100281
- P. Anand, V.M. Patil, V.K. Sharma, R.L. Khosa and N. Masand, Int. J.Drug Des. Discov., 3, 851 (2012).
- N. Aggarwal, R. Kumar, P. Dureja and D.S. Rawat, J. Agric. Food Chem.,57, 8520 (2009); https://doi.org/10.1021/jf902035w
- V. Patel, P. Trivedi, H. Gohel and D. Khetani, Int. J. Adv. Pharm. Biol.Chem., 3, 999 (2014).
- V.S.V. Satyanarayana, P. Sreevani, A. Sivakumar and V. Vijayakumar, ARKIVOC, 221 (2008); https://doi.org/10.3998/ark.5550190.0009.h21
- L. Feng, Y. Hou, X. Yong and F. Bao, Acta Crystallogr. Sect. E Struct. Rep. Online, 65, o1086 (2009); https://doi.org/10.1107/S1600536809013762
- SAINT Bruker, SMART, Brucker AXS Inc., Madison, Wisconsin (2001).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, C. Cammi, J.W. Pomelli, P.Y. Ochterski, K. Ayala, G.A. Morokuma, P. Voth, R. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian Inc., Wallingford, CT (2009).
- R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press (1989).
- W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH: Weinheim (2000).
- D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Situations, Wiley-Interscience (2001).
- H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212
- R. Dennington, T. Keith and J. Millam, Gauss View, Version 5.0.8 Semichem Inc., Shawnee Mission KS (2013).
- S. Thangarasu, S. Athimoolam and S.A. Bahadur, Acta Crystallogr. Sect. E Struct. Rep. Online, 67, o2124 (2011); https://doi.org/10.1107/S1600536811029072
- S. Thangarasu, V. Siva, S. Athimoolam and S.A. Bahadur, J. Theor. Comput. Chem., 17, 1850021 (2018); https://doi.org/10.1142/S0219633618500219
- M. Suresh, V. Siva, S.A. Bahadur and S. Athimoolam, J. Mol. Struct., 1221, 128820 (2020); https://doi.org/10.1016/j.molstruc.2020.128820
- A. Anandhan, C. Sivasankari, M. Saravanabhavan, V. Siva and K. Senthil, J. Mol. Struct., 1203, 127400 (2020); https://doi.org/10.1016/j.molstruc.2019.127400
- S. Premkumar, A. Jawahar, T. Mathavan, M.K. Dhas, V.G. Sathe and A.M.F. Benial, Spectrochim. Acta Mol. Biomol. Spectrosc., 129, 74 (2014); https://doi.org/10.1016/j.saa.2014.02.147
- N. Bhuvaneswari, N. Priyadharsini, S. Sivakumar, K. Venkatachalam and V. Siva, J. Therm. Anal. Calorim., 136, 411 (2019); https://doi.org/10.1007/s10973-018-7908-1
- V. Siva, S.S. Kumar, M. Suresh, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mol. Struct., 1133, 163 (2017);https://doi.org/10.1016/j.molstruc.2016.11.088
- N. Prabavathi, A. Nilufer and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 449 (2013); https://doi.org/10.1016/j.saa.2013.05.011
- V. Krishnakumar, N. Jayamani, R. Mathammal, J. Raman Spectrosc., 40, 936 (2009); https://doi.org/10.1002/jrs.2203
- M. Ahamad, R.M. Rao, M.M. Rafi, G.J. Mohinddin and J. Sreeramulu, Arch. Appl. Res., 4, 858 (2012).
- K.D. Park, J.H. Lee, S.H. Kim, T.H. Kang, J.S. Moon and S.U. Kim, Bioorg. Med. Chem. Lett., 16, 3913 (2006); https://doi.org/10.1016/j.bmcl.2006.05.033
References
V. Krishnakumar and R. Nagalakshmi, Cryst. Growth Des., 8, 3882 (2008); https://doi.org/10.1021/cg070548i
D.M. Bishop, B. Champagne and B. Kirtman, J. Chem. Phys., 109, 9987 (1998); https://doi.org/10.1063/1.477665
H. Reis, M.G. Papadopoulos, P. Calaminici, K. Jug and A.M. Köster, Chem. Phys., 261, 359 (2000); https://doi.org/10.1016/S0301-0104(00)00305-0
A.K. Jain, S.C. Mehta and N.M. Shrivastava, Indian J. Pharm., 37,395 (2005); https://doi.org/10.4103/0253-7613.19078
V. Siva, A. Shameem, A. Murugan, S. Athimoolam, M. Suresh and S.A. Bahadur, Chem. Data Coll., 24, 100281 (2019); https://doi.org/10.1016/j.cdc.2019.100281
P. Anand, V.M. Patil, V.K. Sharma, R.L. Khosa and N. Masand, Int. J.Drug Des. Discov., 3, 851 (2012).
N. Aggarwal, R. Kumar, P. Dureja and D.S. Rawat, J. Agric. Food Chem.,57, 8520 (2009); https://doi.org/10.1021/jf902035w
V. Patel, P. Trivedi, H. Gohel and D. Khetani, Int. J. Adv. Pharm. Biol.Chem., 3, 999 (2014).
V.S.V. Satyanarayana, P. Sreevani, A. Sivakumar and V. Vijayakumar, ARKIVOC, 221 (2008); https://doi.org/10.3998/ark.5550190.0009.h21
L. Feng, Y. Hou, X. Yong and F. Bao, Acta Crystallogr. Sect. E Struct. Rep. Online, 65, o1086 (2009); https://doi.org/10.1107/S1600536809013762
SAINT Bruker, SMART, Brucker AXS Inc., Madison, Wisconsin (2001).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, C. Cammi, J.W. Pomelli, P.Y. Ochterski, K. Ayala, G.A. Morokuma, P. Voth, R. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian Inc., Wallingford, CT (2009).
R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press (1989).
W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH: Weinheim (2000).
D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Situations, Wiley-Interscience (2001).
H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212
R. Dennington, T. Keith and J. Millam, Gauss View, Version 5.0.8 Semichem Inc., Shawnee Mission KS (2013).
S. Thangarasu, S. Athimoolam and S.A. Bahadur, Acta Crystallogr. Sect. E Struct. Rep. Online, 67, o2124 (2011); https://doi.org/10.1107/S1600536811029072
S. Thangarasu, V. Siva, S. Athimoolam and S.A. Bahadur, J. Theor. Comput. Chem., 17, 1850021 (2018); https://doi.org/10.1142/S0219633618500219
M. Suresh, V. Siva, S.A. Bahadur and S. Athimoolam, J. Mol. Struct., 1221, 128820 (2020); https://doi.org/10.1016/j.molstruc.2020.128820
A. Anandhan, C. Sivasankari, M. Saravanabhavan, V. Siva and K. Senthil, J. Mol. Struct., 1203, 127400 (2020); https://doi.org/10.1016/j.molstruc.2019.127400
S. Premkumar, A. Jawahar, T. Mathavan, M.K. Dhas, V.G. Sathe and A.M.F. Benial, Spectrochim. Acta Mol. Biomol. Spectrosc., 129, 74 (2014); https://doi.org/10.1016/j.saa.2014.02.147
N. Bhuvaneswari, N. Priyadharsini, S. Sivakumar, K. Venkatachalam and V. Siva, J. Therm. Anal. Calorim., 136, 411 (2019); https://doi.org/10.1007/s10973-018-7908-1
V. Siva, S.S. Kumar, M. Suresh, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mol. Struct., 1133, 163 (2017);https://doi.org/10.1016/j.molstruc.2016.11.088
N. Prabavathi, A. Nilufer and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 449 (2013); https://doi.org/10.1016/j.saa.2013.05.011
V. Krishnakumar, N. Jayamani, R. Mathammal, J. Raman Spectrosc., 40, 936 (2009); https://doi.org/10.1002/jrs.2203
M. Ahamad, R.M. Rao, M.M. Rafi, G.J. Mohinddin and J. Sreeramulu, Arch. Appl. Res., 4, 858 (2012).
K.D. Park, J.H. Lee, S.H. Kim, T.H. Kang, J.S. Moon and S.U. Kim, Bioorg. Med. Chem. Lett., 16, 3913 (2006); https://doi.org/10.1016/j.bmcl.2006.05.033