Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Glow Discharge Plasma as a Cause of Changes in Aqueous Solutions: The Mass Spectrometry Study of Solvation Processes of Ions
Corresponding Author(s) : Grzegorz Schroeder
Asian Journal of Chemistry,
Vol. 33 No. 1 (2021): Vol 33 Issue 1
Abstract
A new apparatus for inducing changes in the properties of water in closed dielectric vessel by subjecting it to pulsed direct current glow discharge plasma is designed and constructed. It has been hypothesized that the action of plasma on the structure of water consists in resonance excitation of water aggregates. As a result of resonance excitation, aggregates of high molar masses are broken down into low molecular mass aggregates. Analysis of the ESI MS spectra revealed that in all tested aqueous solutions after exposure to plasma, the concentration of low-molecular solvated ions [M(H2O)]+ and [M(H2O)2]+ significantly increased, while the concentration of the ions of high molecular masses [M(H2O)6-10]+ solvated by water aggregates decreased, relative to their concentrations in the water solutions not subjected to plasma irradiation. According to our measurements also a significant change in pH occurs. The presented results clearly show that it is possible to process a liquid that changes its structure without involving high processing energy and, unexpectedly, the obtained change of parameters is significant and stable over time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G.Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. MacHala, I. Marinov, D. Mariotti, S. Mededovic Thagard,D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter,D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. Von Woedtke, K.R. Wilson, K. Yasui and G. Zvereva, Plasma Sources Sci. Technol., 25, 053002 (2016); https://doi.org/10.1088/0963-0252/25/5/053002
- H.R. Metelmann, T. von Woedtke and K.D. Weltmann, Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application, Springer, Cham (2018).
- G.G. Bãlan, I. Rosca, E.L. Ursu, F. Doroftei, A.C. Bostãnaru, E. Hnatiuc, V. Nãstasã, V. Sandru, G. Stefãnescu, A. Trifan and M. Mares, Infect. Drug Resist., 11, 727 (2018); https://doi.org/10.2147/IDR.S159243
- M. Laroussi and T. Akan, Plasma Process. Polym., 4, 777 (2007); https://doi.org/10.1002/ppap.200700066
- Z. Chen, L. Lin, X. Cheng, E. Gjika and M. Keidar, Biointerphases, 11, 031010 (2016); https://doi.org/10.1116/1.4962130
- M. Laroussi, X. Lu and M. Keidar, J. Appl. Phys., 122, 020901 (2017); https://doi.org/10.1063/1.4993710
- F.G. Chizoba Ekezie, D.W. Sun and J.H. Cheng, Trends Food Sci.Technol., 69, 46 (2017); https://doi.org/10.1016/j.tifs.2017.08.007
- M. Moreau, N. Orange and M.G.J. Feuilloley, Biotechnol. Adv., 26, 610 (2008); https://doi.org/10.1016/j.biotechadv.2008.08.001
- A.A. Bol’shakov, B.A. Cruden, R. Mogul, M.V.V.S. Rao, S.P. Sharma, B.N. Khare and M. Meyyappan, AIAA J., 42, 823 (2004); https://doi.org/10.2514/1.9562
- T. Von Woedtke, B. Haertel, K.D. Weltmann and U. Lindequist, Pharmazie, 68, 492 (2013); https://doi.org/10.1691/ph.2013.6521
- N. Kaushik, N. Uddin, G.B. Sim, Y.J. Hong, K.Y. Baik, C.H. Kim, S.J.Lee, N.K. Kaushik and E.H. Choi, Sci. Rep., 5, 8587 (2015);https://doi.org/10.1038/srep08587
- H. D. Stryczewska, T. Jakubowski, T. Gizewski and J. Pawlat, Artic. J.Adv. Oxid. Technol., 16, 52 (2013); https://doi.org/10.1515/jaots-2013-0105
- J.E. Foster, Phys. Plasmas, 24, 055501 (2017); https://doi.org/10.1063/1.4977921
- G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets and A. Fridman, Plasma Process. Polym., 5, 503 (2008); https://doi.org/10.1002/ppap.200700154
- S.D. Colson and T.H. Dunning Jr., Science, 265, 543 (1994); https://doi.org/10.1126/science.265.5168.43
- V. Goncharuk and V. Kazimirov, J. Water Chem. Technol., 21, 5 (1999).
- T.H. Plumridge and R.D. Waigh, J. Pharm. Pharmacol., 54, 1155 (2002); https://doi.org/10.1211/002235702320402008
- M.C.R. Symons, Phys. Eng. Sci., 359, 1631 (2001); https://doi.org/10.1098/rsta.2001.0869
- D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press (2007).
- A. Lenz and L. Ojamäe, J. Phys. Chem. A, 110, 13388 (2006); https://doi.org/10.1021/jp066372x
- V.V. Goncharuk and V.V. Goncharuk, Water Clusters, in: Drinking Water, Springer International Publishing, pp. 51-103 (2014).
- M.W. Ho, WATER, 6, 12 (2014); https://doi.org/10.14294/WATER.2013.12
- E.M. Kabadi and S.S. Pingale, Int. J. Res. Anal. Rev., 6, (2019).
- I. Bakó, I. Mayer, A. Hamza and L. Pusztai, J. Mol. Liq., 28, 5171 (2019); https://doi.org/10.1016/j.molliq.2019.04.088
- I. Tereshko, V. Abidzina, N. Kalinowskaya, I. Melnikau, A. Gorchakov, V. Red’ko, A. Khomchenko and I. Elkin, Nanocluster Evolution in Molecular Chains of Water Under the Low-energy Ion Irradiation, 9th IEEE Conf. Nanotechnology, IEEE NANO 2009, pp. 729-732 (2009).
- I. Tereshko, V. Abidzina, I. Elkin, N. Kalinowskaya, I. Melnikau and A. Khomchenko, Computer Simulation of Nanocluster Evolution in Nonlinear Molecular Chains of Water, Dresden, Germany (2008).
- B. Hribar, N.T. Southall, V. Vlachy and K.A. Dill, J. Am. Chem. Soc., 124, 12302 (2002); https://doi.org/10.1021/ja026014h
- M. Eigen and L. De Maeyer, Chemie., 59, 986 (1955); https://doi.org/10.1002/bbpc.19550591020
- P.L. Geissler, C. Dellago, D. Chandler, J. Hutter and M. Parrinello, Science, 291, 2121 (2001); https://doi.org10.1126/science.1056991
- W.C. Natzle and C.B. Moore, J. Phys. Chem., 89, 2605 (1985); https://doi.org/10.1021/j100258a035
- A.A. Volkov, V.G. Artemov, A.A. Volkov Jr. and N.N. Sysoev, J. Mol. Liq., 248, 564 (2017); https://doi.org/10.1016/j.molliq.2017.10.071
- M. Ahmed, V. Namboodiri, A.K. Singh, J.A. Mondal and S.K. Sarkar, J. Phys. Chem. B, 117, 16479 (2013);https://doi.org/10.1021/jp4100697
- H.J. Bakker, M.F. Kropman and A.W. Omta, J. Phys. Condens. Matter, 17, 3215 (2005); https://doi.org/10.1088/0953-8984/17/45/004
- J. Mähler and I. Persson, Inorg. Chem., 51, 425 (2012); https://doi.org/10.1021/ic2018693
- M. Chaplin, Water Molecule Structure (2019); http://www.lsbu.ac.uk/water/molecule.html (accessed July 29,2020).
- A. Kilaj, H. Gao, D. Rösch, U. Rivero, J. Küpper and S. Willitsch, Nat. Commun., 9, 2096 (2018);https://doi.org/10.1038/s41467-018-04483-3
- S.A. Potekhin and R.S. Khusainova, Biophys. Chem., 118, 84 (2005); https://doi.org/10.1016/j.bpc.2005.07.003
- S.N. Andreev, V.P. Makarov, V.I. Tikhonov and A.A. Volkov, Arxiv. Org. (2007). https://arxiv.org/abs/physics/0703038
- S.M. Pershin, V.A. Alekseev, N.G. Alekseeva and A.D. Zhigalin, Phys. Wave Phenom., 16, 159 (2008); https://doi.org/10.3103/S1541308X08030011
- S.M. Pershin, Phys. Wave Phen., 13, 192 (2005);https://doi.org/10.1007/s11975-008-1003-x
- S.M. Pershin, Laser Phys., 16, 1184 (2006);https://doi.org/10.1134/S1054660X06080056
- S.D. Zakharov, Biofizika, 58, 904 (2013).
- S. Romanenko, R. Begley, A.R. Harvey, L. Hool and V.P. Wallace, J. R. Soc. Interface, 14, 20170585 (2017);https://doi.org/10.1098/rsif.2017.0585
- C. Rønne, L. Thrane, P.O. Åstrand, A. Wallqvist, K.V. Mikkelsen and S.R. Keiding, J. Chem. Phys.,107, 5319(1997);https://doi.org/10.1063/1.474242
- E. Pickwell and V.P. Wallace, J. Phys. D Appl. Phys., 39, R301 (2006);https://doi.org/10.1088/0022-372739/17/R01
- J.-S. Suh, Terahertz Characteristics of Water and Liquids, in: Terahertz Biomedical Science and Technology,CRC Press: Boca Raton, edn 1,pp. 377 (2014).
- Y. Nagata, S. Yoshimune, C.S. Hsieh, J. Hunger and M. Bonn, Phys.Rev. X, 5, 021002 (2015);https://doi.org/10.1103/PhysRevX.5.021002
- G. Beretta, A.F. Mastorgio, L. Pedrali, S. Saponaro and E. Sezenna, Rev. Environ. Sci. Biotechnol., 18, 29 (2019);https://doi.org/10.1007/s11157-018-09491-9
References
P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G.Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. MacHala, I. Marinov, D. Mariotti, S. Mededovic Thagard,D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter,D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. Von Woedtke, K.R. Wilson, K. Yasui and G. Zvereva, Plasma Sources Sci. Technol., 25, 053002 (2016); https://doi.org/10.1088/0963-0252/25/5/053002
H.R. Metelmann, T. von Woedtke and K.D. Weltmann, Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application, Springer, Cham (2018).
G.G. Bãlan, I. Rosca, E.L. Ursu, F. Doroftei, A.C. Bostãnaru, E. Hnatiuc, V. Nãstasã, V. Sandru, G. Stefãnescu, A. Trifan and M. Mares, Infect. Drug Resist., 11, 727 (2018); https://doi.org/10.2147/IDR.S159243
M. Laroussi and T. Akan, Plasma Process. Polym., 4, 777 (2007); https://doi.org/10.1002/ppap.200700066
Z. Chen, L. Lin, X. Cheng, E. Gjika and M. Keidar, Biointerphases, 11, 031010 (2016); https://doi.org/10.1116/1.4962130
M. Laroussi, X. Lu and M. Keidar, J. Appl. Phys., 122, 020901 (2017); https://doi.org/10.1063/1.4993710
F.G. Chizoba Ekezie, D.W. Sun and J.H. Cheng, Trends Food Sci.Technol., 69, 46 (2017); https://doi.org/10.1016/j.tifs.2017.08.007
M. Moreau, N. Orange and M.G.J. Feuilloley, Biotechnol. Adv., 26, 610 (2008); https://doi.org/10.1016/j.biotechadv.2008.08.001
A.A. Bol’shakov, B.A. Cruden, R. Mogul, M.V.V.S. Rao, S.P. Sharma, B.N. Khare and M. Meyyappan, AIAA J., 42, 823 (2004); https://doi.org/10.2514/1.9562
T. Von Woedtke, B. Haertel, K.D. Weltmann and U. Lindequist, Pharmazie, 68, 492 (2013); https://doi.org/10.1691/ph.2013.6521
N. Kaushik, N. Uddin, G.B. Sim, Y.J. Hong, K.Y. Baik, C.H. Kim, S.J.Lee, N.K. Kaushik and E.H. Choi, Sci. Rep., 5, 8587 (2015);https://doi.org/10.1038/srep08587
H. D. Stryczewska, T. Jakubowski, T. Gizewski and J. Pawlat, Artic. J.Adv. Oxid. Technol., 16, 52 (2013); https://doi.org/10.1515/jaots-2013-0105
J.E. Foster, Phys. Plasmas, 24, 055501 (2017); https://doi.org/10.1063/1.4977921
G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets and A. Fridman, Plasma Process. Polym., 5, 503 (2008); https://doi.org/10.1002/ppap.200700154
S.D. Colson and T.H. Dunning Jr., Science, 265, 543 (1994); https://doi.org/10.1126/science.265.5168.43
V. Goncharuk and V. Kazimirov, J. Water Chem. Technol., 21, 5 (1999).
T.H. Plumridge and R.D. Waigh, J. Pharm. Pharmacol., 54, 1155 (2002); https://doi.org/10.1211/002235702320402008
M.C.R. Symons, Phys. Eng. Sci., 359, 1631 (2001); https://doi.org/10.1098/rsta.2001.0869
D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press (2007).
A. Lenz and L. Ojamäe, J. Phys. Chem. A, 110, 13388 (2006); https://doi.org/10.1021/jp066372x
V.V. Goncharuk and V.V. Goncharuk, Water Clusters, in: Drinking Water, Springer International Publishing, pp. 51-103 (2014).
M.W. Ho, WATER, 6, 12 (2014); https://doi.org/10.14294/WATER.2013.12
E.M. Kabadi and S.S. Pingale, Int. J. Res. Anal. Rev., 6, (2019).
I. Bakó, I. Mayer, A. Hamza and L. Pusztai, J. Mol. Liq., 28, 5171 (2019); https://doi.org/10.1016/j.molliq.2019.04.088
I. Tereshko, V. Abidzina, N. Kalinowskaya, I. Melnikau, A. Gorchakov, V. Red’ko, A. Khomchenko and I. Elkin, Nanocluster Evolution in Molecular Chains of Water Under the Low-energy Ion Irradiation, 9th IEEE Conf. Nanotechnology, IEEE NANO 2009, pp. 729-732 (2009).
I. Tereshko, V. Abidzina, I. Elkin, N. Kalinowskaya, I. Melnikau and A. Khomchenko, Computer Simulation of Nanocluster Evolution in Nonlinear Molecular Chains of Water, Dresden, Germany (2008).
B. Hribar, N.T. Southall, V. Vlachy and K.A. Dill, J. Am. Chem. Soc., 124, 12302 (2002); https://doi.org/10.1021/ja026014h
M. Eigen and L. De Maeyer, Chemie., 59, 986 (1955); https://doi.org/10.1002/bbpc.19550591020
P.L. Geissler, C. Dellago, D. Chandler, J. Hutter and M. Parrinello, Science, 291, 2121 (2001); https://doi.org10.1126/science.1056991
W.C. Natzle and C.B. Moore, J. Phys. Chem., 89, 2605 (1985); https://doi.org/10.1021/j100258a035
A.A. Volkov, V.G. Artemov, A.A. Volkov Jr. and N.N. Sysoev, J. Mol. Liq., 248, 564 (2017); https://doi.org/10.1016/j.molliq.2017.10.071
M. Ahmed, V. Namboodiri, A.K. Singh, J.A. Mondal and S.K. Sarkar, J. Phys. Chem. B, 117, 16479 (2013);https://doi.org/10.1021/jp4100697
H.J. Bakker, M.F. Kropman and A.W. Omta, J. Phys. Condens. Matter, 17, 3215 (2005); https://doi.org/10.1088/0953-8984/17/45/004
J. Mähler and I. Persson, Inorg. Chem., 51, 425 (2012); https://doi.org/10.1021/ic2018693
M. Chaplin, Water Molecule Structure (2019); http://www.lsbu.ac.uk/water/molecule.html (accessed July 29,2020).
A. Kilaj, H. Gao, D. Rösch, U. Rivero, J. Küpper and S. Willitsch, Nat. Commun., 9, 2096 (2018);https://doi.org/10.1038/s41467-018-04483-3
S.A. Potekhin and R.S. Khusainova, Biophys. Chem., 118, 84 (2005); https://doi.org/10.1016/j.bpc.2005.07.003
S.N. Andreev, V.P. Makarov, V.I. Tikhonov and A.A. Volkov, Arxiv. Org. (2007). https://arxiv.org/abs/physics/0703038
S.M. Pershin, V.A. Alekseev, N.G. Alekseeva and A.D. Zhigalin, Phys. Wave Phenom., 16, 159 (2008); https://doi.org/10.3103/S1541308X08030011
S.M. Pershin, Phys. Wave Phen., 13, 192 (2005);https://doi.org/10.1007/s11975-008-1003-x
S.M. Pershin, Laser Phys., 16, 1184 (2006);https://doi.org/10.1134/S1054660X06080056
S.D. Zakharov, Biofizika, 58, 904 (2013).
S. Romanenko, R. Begley, A.R. Harvey, L. Hool and V.P. Wallace, J. R. Soc. Interface, 14, 20170585 (2017);https://doi.org/10.1098/rsif.2017.0585
C. Rønne, L. Thrane, P.O. Åstrand, A. Wallqvist, K.V. Mikkelsen and S.R. Keiding, J. Chem. Phys.,107, 5319(1997);https://doi.org/10.1063/1.474242
E. Pickwell and V.P. Wallace, J. Phys. D Appl. Phys., 39, R301 (2006);https://doi.org/10.1088/0022-372739/17/R01
J.-S. Suh, Terahertz Characteristics of Water and Liquids, in: Terahertz Biomedical Science and Technology,CRC Press: Boca Raton, edn 1,pp. 377 (2014).
Y. Nagata, S. Yoshimune, C.S. Hsieh, J. Hunger and M. Bonn, Phys.Rev. X, 5, 021002 (2015);https://doi.org/10.1103/PhysRevX.5.021002
G. Beretta, A.F. Mastorgio, L. Pedrali, S. Saponaro and E. Sezenna, Rev. Environ. Sci. Biotechnol., 18, 29 (2019);https://doi.org/10.1007/s11157-018-09491-9