Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mechanical, Thermal Properties and Hirshfeld Surface Analysis of N-Acetylglycine Single Crystal
Corresponding Author(s) : N. Kanagathara
Asian Journal of Chemistry,
Vol. 33 No. 1 (2021): Vol 33 Issue 1
Abstract
Mechanical properties of some amino acid based derivatives plays a versatile role in the device fabrication due to its mechanical strength. One such acetyl derivative of glycine named N-acetylglycine has been taken in the present study for investigation. Hardness analysis has been carried out on the grown crystal with various loads and it was observed that Vicker’s hardness number (Hv) varied for different loads. The work hardening coefficient is calculated to be 1.628 which confirms that the grown crystal comes under moderately hard material category. Other mechanical parameters like minimum load indentation (W), materials constant (k1), load dependent constant (A1) and elastic stiffness constant (C11) have also been calculated. The thermal analysis has also been carried and it reveals that the complete weight loss of N-acetylglycine starts from 208.60 ºC and ends at 281.58 ºC. The corresponding DTA peak is observed at 217.97 ºC which is the melting point of the sample. As expected, there is no phase transition till the material melts and this enhances the temperature range for the utility of the crystal. Kinetic and thermodynamic parameters have been calculated. All the results obtained from hardness as well as thermal measurement confirm the material may be suitable for electro-optic device applications. Further, the 3D Hirshfeld surface analysis and 2D fingerprint maps gives deep insight into the intermolecular interactions between the compound.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Egart, B. Jankovic and S. Srèiè, Acta Pharm., 66, 303 (2016); https://doi.org/10.1515/acph-2016-0032
- R.W. Armstrong and W.L. Elban, Mater. Sci. Technol., 28, 1060 (2012); https://doi.org/10.1179/1743284712Y.0000000012
- J. Donohue and R.E. Marsh, Acta Crystallogr., 15, 941 (1962); https://doi.org/10.1107/S0365110X62002492
- H. Etori, K. Taga, H. Okabayashi and K. Ohshima, J. Chem. Soc., Faraday Trans., 93, 313 (1997); https://doi.org/10.1039/a605741a
- S. Bee, N. Choudhary, A. Gupta and P. Tandon, Biopolymers, 101, 795 (2014); https://doi.org/10.1002/bip.22458
- B. Boeckx and G. Maes, J. Phys. Chem. A, 116, 1956 (2012); https://doi.org/10.1021/jp211382u
- C. Bruyneel, A.K. Chandra, T. Uchimaru and T. Zeegers-Huyskens, Spectrochim. Acta A Mol. Biomol. Spectrosc., 56, 591 (2000); https://doi.org/10.1016/S1386-1425(99)00258-9
- R.E. Vizhi, R.A. Kumar, D.R. Babu, K. Sathiyanarayanan and G. Bhagavannarayana, Ferroelectrics, 413, 291 (2011); https://doi.org/10.1080/00150193.2011.531194)
- J. Baran and A.M. Petrosyan, Ferroelectrics, 432, 117 (2012); https://doi.org/10.1080/00150193.2012.707879
- H. Kumar, M. Singla and H. Mittal, J. Chem.Thermodyn.,94, 204 (2016);https://doi.org/10.1016/j.jct.2015.10.017
- D. Nagaraju, P.V. Raja Shekar, C.S. Chandra, K.K. Rao and N.G.Krishna, AIP Conf. Proc., 1591, 1259 (2014);https://doi.org/10.1063/1.4872923
- T. Balakrishnan and K. Ramamurthi, Mater. Lett., 62, 65 (2008); https://doi.org/10.1016/j.matlet.2007.04.072
- Y. Zhang, L. Feng and W. Qiu, J. Mater. Sci., 54, 9507 (2019); https://doi.org/10.1007/s10853-019-03543-3
- N. Nithya, R. Mahalakshmi and S. Sagadevan, Mater. Res., 18, 581 (2015); https://doi.org/10.1590/1516-1439.007015
- S. Suresh, A. Ramanand, P. Mani and K. Murthyanand, J. Optoelectron Biomed. Mater., 1, 129 (2010).
- S. Sagadevan, Int. J. Chem. Tech. Res., 6, 2645 (2014).
- A.A. Latha, M. Anbuchezhiyan, C.C. Kanakam and K. Selvarani, Mater.Sci. Pol., 35, 140 (2017);https://doi.org/10.1515/msp-2017-0031
- S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C.Popescu and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011);https://doi.org/10.1016/j.tca.2011.03.034
- S. Vyazovkin and I. Dranca, Macromol. Chem. Phys., 207, 20 (2006); https://doi.org/10.1002/macp.200500419
- V.L. Stanford, C.M. McCulley and S. Vyazovkin, J. Phys. Chem. B,120, 5703 (2016);https://doi.org/10.1021/acs.jpcb.6b03860
- X.G. Li, M.R. Huang, G.-H. Guan and T. Sun, Polym. Int., 46, 289(1998);https://doi.org/10.1002/(SICI)1097-0126(199808)46:4<289::AIDPI993>3.0.CO;2-O
- X.G. Li, J. Appl. Polym. Sci., 74, 2016 (1999);https://doi.org/10.1002/(SICI)1097-4628(19991121)74:8<2016::AIDAPP17>3.0.CO;2-T
- N. Kanagathara, M.K. Marchewka, S. Gunasekaran and G. Anbalagan, Acta Phys. Pol. A, 126, 827 (2014);https://doi.org/10.12693/APhysPolA.126.827
- R. Bhuvaneswari, G. Vinitha and K. Sakthi Murugesan, Appl. Phys., AMater. Sci. Process., 125, 385 (2019);https://doi.org/10.1007/s00339-019-2678-6
- A. Bhaskaran, C.M. Ragavan, R. Sankar, R. Mohan Kumar and R.Jayavel, Cryst. Res. Technol., 42, 477 (2007);https://doi.org/10.1002/crat.200610851
- K. Sangwal, Cryst. Res. Technol., 44, 1019 (2009); https://doi.org/10.1002/crat.200900385
- M. Shkir, S. Muhammad, S. AlFaify, A. Irfan, M.A. Khan, A.G. Al-Sehemi, I.S. Yahia, B. Singh and I. Bdikin, J. Saudi Chem. Soc., 22, 352 (2018); https://doi.org/10.1016/j.jscs.2016.05.003
- K. Boopathi, P. Rajesh, P. Ramasamy, Prapun Manyum, Opt. Mater.,35, 954 (2013);https://doi.org/10.1016/j.optmat.2012.11.015
- T.B. Krishnan, P. Revathi, S. Sakthivel and K. Ramamurthi, J. Taibah Univ. Sci., 12, 208 (2018); https://doi.org/10.1080/16583655.2018.1451106
- H. Kamari, N. Al-Hada, E. Saion, A. Shaari, Z. Talib, M. Flaifel and A.Ahmed, Crystals, 7, 2 (2017); https://doi.org/10.3390/cryst7020002
- K. Selvakumar, Indian J. Sci. Technol., 9, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i36/101967
- K. Harada, Nature, 214, 479 (1967); https://doi.org/10.1038/214479a0
- V.Y. Yablokov, I.L. Smel’tsova, I.A. Zelyaev and S.V. Mitrofanova, Russ. J. Gen. Chem., 79, 1704 (2009); https://doi.org/10.1134/S1070363209080209
- A. Schaberg, R. Wroblowski and R. Goertz, J. Phys. Conf. Ser., 1107,032013 (2018); https://doi.org/10.1088/1742-6596/1107/3/032013
- N. Kanagathara, M.K. Marchewka, N. Sivakumar, N.G. Renganathan, K. Gayathri, S. Gunasekaran and G. Anbalagan, J. Therm. Anal. Calorim.,112, 1317 (2013); https://doi.org/10.1007/s10973-012-2713-8
- K.J. Laidler, Chemical Kinetics, Harper & Row: New York (1987).
- K.D. Parikh, D.J. Dave, B.B. Parekh, M.J. Joshi and Thermal, Bull. Mater. Sci., 30, 105 (2007); https://doi.org/10.1007/s12034-007-0019-4
- A. Broido, J. Polym. Sci. Part A-2, 7, 1761 (1969); https://doi.org/10.1002/pol.1969.160071012
- H.H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963); https://doi.org/10.1021/ac60203a013
- A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964); https://doi.org/10.1038/201068a0
- S.L. Price, J. Chem. Soc. Faraday Trans., 92, 2997 (1996); https://doi.org/10.1039/FT9969202997
- S.L. Price, eds.: Ed.: A. Gavezzotti, Theoretical Aspects and Computer Modeling of the Molecular Solid State, Wiley: Chichester, pp. 31-60(1997).
- K.R. Seddon, eds.: K.R. Seddon and M. Zaworotko, Crystal Engineering, In: The Design and Application of Functional Solids, Kluwer Academic: Amsterdam, pp. 1-28 (1999).
- F.H. Allen, Acta Crystallogr. B, 58, 380 (2002);https://doi.org/10.1107/S0108768102003890
- G.R. Desiraju, Chem. Commun., 1475 (1997);https://doi.org/10.1039/a607149j
- F.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977);https://doi.org/10.1007/BF00549096
- M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman,D. Jayatilaka and M.A. Spackman, CrystalExplorer17 (2017).
- M.A. Spackman, J.J. McKinnon and D. Jayatilaka, CrystEngComm,10, 377 (2008).
- M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
- S.K. Wolff, D.J. Greenwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka and M.A. Spackman, Crystal Explorer, Version 3.1 (2012).
- M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009);https://doi.org/10.1039/B818330A
References
M. Egart, B. Jankovic and S. Srèiè, Acta Pharm., 66, 303 (2016); https://doi.org/10.1515/acph-2016-0032
R.W. Armstrong and W.L. Elban, Mater. Sci. Technol., 28, 1060 (2012); https://doi.org/10.1179/1743284712Y.0000000012
J. Donohue and R.E. Marsh, Acta Crystallogr., 15, 941 (1962); https://doi.org/10.1107/S0365110X62002492
H. Etori, K. Taga, H. Okabayashi and K. Ohshima, J. Chem. Soc., Faraday Trans., 93, 313 (1997); https://doi.org/10.1039/a605741a
S. Bee, N. Choudhary, A. Gupta and P. Tandon, Biopolymers, 101, 795 (2014); https://doi.org/10.1002/bip.22458
B. Boeckx and G. Maes, J. Phys. Chem. A, 116, 1956 (2012); https://doi.org/10.1021/jp211382u
C. Bruyneel, A.K. Chandra, T. Uchimaru and T. Zeegers-Huyskens, Spectrochim. Acta A Mol. Biomol. Spectrosc., 56, 591 (2000); https://doi.org/10.1016/S1386-1425(99)00258-9
R.E. Vizhi, R.A. Kumar, D.R. Babu, K. Sathiyanarayanan and G. Bhagavannarayana, Ferroelectrics, 413, 291 (2011); https://doi.org/10.1080/00150193.2011.531194)
J. Baran and A.M. Petrosyan, Ferroelectrics, 432, 117 (2012); https://doi.org/10.1080/00150193.2012.707879
H. Kumar, M. Singla and H. Mittal, J. Chem.Thermodyn.,94, 204 (2016);https://doi.org/10.1016/j.jct.2015.10.017
D. Nagaraju, P.V. Raja Shekar, C.S. Chandra, K.K. Rao and N.G.Krishna, AIP Conf. Proc., 1591, 1259 (2014);https://doi.org/10.1063/1.4872923
T. Balakrishnan and K. Ramamurthi, Mater. Lett., 62, 65 (2008); https://doi.org/10.1016/j.matlet.2007.04.072
Y. Zhang, L. Feng and W. Qiu, J. Mater. Sci., 54, 9507 (2019); https://doi.org/10.1007/s10853-019-03543-3
N. Nithya, R. Mahalakshmi and S. Sagadevan, Mater. Res., 18, 581 (2015); https://doi.org/10.1590/1516-1439.007015
S. Suresh, A. Ramanand, P. Mani and K. Murthyanand, J. Optoelectron Biomed. Mater., 1, 129 (2010).
S. Sagadevan, Int. J. Chem. Tech. Res., 6, 2645 (2014).
A.A. Latha, M. Anbuchezhiyan, C.C. Kanakam and K. Selvarani, Mater.Sci. Pol., 35, 140 (2017);https://doi.org/10.1515/msp-2017-0031
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C.Popescu and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011);https://doi.org/10.1016/j.tca.2011.03.034
S. Vyazovkin and I. Dranca, Macromol. Chem. Phys., 207, 20 (2006); https://doi.org/10.1002/macp.200500419
V.L. Stanford, C.M. McCulley and S. Vyazovkin, J. Phys. Chem. B,120, 5703 (2016);https://doi.org/10.1021/acs.jpcb.6b03860
X.G. Li, M.R. Huang, G.-H. Guan and T. Sun, Polym. Int., 46, 289(1998);https://doi.org/10.1002/(SICI)1097-0126(199808)46:4<289::AIDPI993>3.0.CO;2-O
X.G. Li, J. Appl. Polym. Sci., 74, 2016 (1999);https://doi.org/10.1002/(SICI)1097-4628(19991121)74:8<2016::AIDAPP17>3.0.CO;2-T
N. Kanagathara, M.K. Marchewka, S. Gunasekaran and G. Anbalagan, Acta Phys. Pol. A, 126, 827 (2014);https://doi.org/10.12693/APhysPolA.126.827
R. Bhuvaneswari, G. Vinitha and K. Sakthi Murugesan, Appl. Phys., AMater. Sci. Process., 125, 385 (2019);https://doi.org/10.1007/s00339-019-2678-6
A. Bhaskaran, C.M. Ragavan, R. Sankar, R. Mohan Kumar and R.Jayavel, Cryst. Res. Technol., 42, 477 (2007);https://doi.org/10.1002/crat.200610851
K. Sangwal, Cryst. Res. Technol., 44, 1019 (2009); https://doi.org/10.1002/crat.200900385
M. Shkir, S. Muhammad, S. AlFaify, A. Irfan, M.A. Khan, A.G. Al-Sehemi, I.S. Yahia, B. Singh and I. Bdikin, J. Saudi Chem. Soc., 22, 352 (2018); https://doi.org/10.1016/j.jscs.2016.05.003
K. Boopathi, P. Rajesh, P. Ramasamy, Prapun Manyum, Opt. Mater.,35, 954 (2013);https://doi.org/10.1016/j.optmat.2012.11.015
T.B. Krishnan, P. Revathi, S. Sakthivel and K. Ramamurthi, J. Taibah Univ. Sci., 12, 208 (2018); https://doi.org/10.1080/16583655.2018.1451106
H. Kamari, N. Al-Hada, E. Saion, A. Shaari, Z. Talib, M. Flaifel and A.Ahmed, Crystals, 7, 2 (2017); https://doi.org/10.3390/cryst7020002
K. Selvakumar, Indian J. Sci. Technol., 9, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i36/101967
K. Harada, Nature, 214, 479 (1967); https://doi.org/10.1038/214479a0
V.Y. Yablokov, I.L. Smel’tsova, I.A. Zelyaev and S.V. Mitrofanova, Russ. J. Gen. Chem., 79, 1704 (2009); https://doi.org/10.1134/S1070363209080209
A. Schaberg, R. Wroblowski and R. Goertz, J. Phys. Conf. Ser., 1107,032013 (2018); https://doi.org/10.1088/1742-6596/1107/3/032013
N. Kanagathara, M.K. Marchewka, N. Sivakumar, N.G. Renganathan, K. Gayathri, S. Gunasekaran and G. Anbalagan, J. Therm. Anal. Calorim.,112, 1317 (2013); https://doi.org/10.1007/s10973-012-2713-8
K.J. Laidler, Chemical Kinetics, Harper & Row: New York (1987).
K.D. Parikh, D.J. Dave, B.B. Parekh, M.J. Joshi and Thermal, Bull. Mater. Sci., 30, 105 (2007); https://doi.org/10.1007/s12034-007-0019-4
A. Broido, J. Polym. Sci. Part A-2, 7, 1761 (1969); https://doi.org/10.1002/pol.1969.160071012
H.H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963); https://doi.org/10.1021/ac60203a013
A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964); https://doi.org/10.1038/201068a0
S.L. Price, J. Chem. Soc. Faraday Trans., 92, 2997 (1996); https://doi.org/10.1039/FT9969202997
S.L. Price, eds.: Ed.: A. Gavezzotti, Theoretical Aspects and Computer Modeling of the Molecular Solid State, Wiley: Chichester, pp. 31-60(1997).
K.R. Seddon, eds.: K.R. Seddon and M. Zaworotko, Crystal Engineering, In: The Design and Application of Functional Solids, Kluwer Academic: Amsterdam, pp. 1-28 (1999).
F.H. Allen, Acta Crystallogr. B, 58, 380 (2002);https://doi.org/10.1107/S0108768102003890
G.R. Desiraju, Chem. Commun., 1475 (1997);https://doi.org/10.1039/a607149j
F.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977);https://doi.org/10.1007/BF00549096
M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman,D. Jayatilaka and M.A. Spackman, CrystalExplorer17 (2017).
M.A. Spackman, J.J. McKinnon and D. Jayatilaka, CrystEngComm,10, 377 (2008).
M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
S.K. Wolff, D.J. Greenwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka and M.A. Spackman, Crystal Explorer, Version 3.1 (2012).
M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009);https://doi.org/10.1039/B818330A