Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Water Hyacinth Cellulose/Silk Fibroin Composite Films: Preparation and Characterization
Corresponding Author(s) : P. Srihanam
Asian Journal of Chemistry,
Vol. 33 No. 1 (2021): Vol 33 Issue 1
Abstract
This study aimed to extract cellulose from water hyacinth using as material for preparation of cellulose/silk fibroin composite films. Using scanning electron microscope (SEM), the native silk fibroin film has smooth surfaces and homogeneous texture, while the cellulose film has short fiber on its surface with dense in texture. The composite films have different morphologies depending on types of polymer used and hierarchical step of film. FTIR analysis showed that the main functional groups of both cellulose (hydroxyl groups) and silk fibroin (carbonyl and amine groups). The composite films also found the absorption peaks of the functional groups which confirmed the composite of both polymers. This results indicated that both polymers had well compatible via bonding formation between the functional groups. The composite films have the maximum temperature decomposition (Td,max) slightly higher value than that of native silk fibroin film. This suggested that the interaction between silk fibroin and cellulose resulted to increase of thermal stability as well as the flexibility of the film.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Brodin, M. Vallejos, M.T. Opedal, M.C. Area and G. Chinga-Carrasco, J. Clean. Prod., 162, 646 (2017);https://doi.org/10.1016/j.jclepro.2017.05.209
- V. Bertolino, G. Cavallaro, G. Lazzara, M. Merli, S. Milioto, F. Parisi and L. Sciascia, Ind. Eng. Chem. Res., 55, 7373 (2016); https://doi.org/10.1021/acs.iecr.6b01816
- D. Kai, M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap and X.J. Loh, Green Chem., 18, 1175 (2016); https://doi.org/10.1039/C5GC02616D
- H. Rajabinejad, M. Zoccola, A. Patrucco, A. Montarsolo, G. Rovero and C. Tonin, Text. Res. J., 88, 2415 (2018);https://doi.org/10.1177/0040517517723028
- D. Sagnelli, K.H. Hebelstrup, E. Leroy, A. Rolland-Sabaté, S. Guilois, J.J.K. Kirkensgaard, K. Mortensen, D. Lourdin and A. Blennow, Carbohydr. Polym., 152, 398 (2016);https://doi.org/10.1016/j.carbpol.2016.07.039
- J.G. Rouse and M.E. Van-Dyke, Materials (Basel), 3, 999 (2010); https://doi.org/10.3390/ma3020999
- P.B. Dennis, A.Y. Walker, M.B. Dickerson, D.L. Kaplan and R.R. Naik, Biomacromolecules, 13, 2037 (2012);https://doi.org/10.1021/bm300358g
- E.M. Pritchard, P.B. Dennis, F. Omenetto, R.R. Naik and D.L. Kaplan, Biopolymers, 97, 479 (2012); https://doi.org/10.1002/bip.22026
- Q. Lu, X. Wang, X. Hu, P. Cebe, F. Omenetto and D.L. Kaplan, Macromol. Biosci., 10, 359 (2010); https://doi.org/10.1002/mabi.200900388
- A.B. Li, J.A. Kluge, N.A. Guziewicz, F.G. Omenetto and D.L. Kaplan, J. Control. Rel., 219, 416 (2015);https://doi.org/10.1016/j.jconrel.2015.09.037
- M. Gholipourmalekabadi, S. Sapru, A. Samadikuchaksaraei, R. Reis, D.L. Kaplan and S.C. Kundu, Adv. Drug Deliv. Rev., 153, 28 (2020); https://doi.org/10.1016/j.addr.2019.09.003
- L.D. Koh, Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh, S.Y. Tee, M. Low, E. Ye, H.D. Yu, Y.W. Zhang and M.-Y. Han, Prog. Polym. Sci., 46, 86 (2015); https://doi.org/10.1016/j.progpolymsci.2015.02.001
- C. Vepari and D.L. Kaplan, Prog. Polym. Sci., 32, 991 (2007); https://doi.org/10.1016/j.progpolymsci.2007.05.013
- A. Leal-Egana and T. Scheibel, Biotechnol. Appl. Biochem., 55, 155 (2010); https://doi.org/10.1042/BA20090229
- D.N. Rockwood, R.C. Preda, T. Yucel, X. Wang, M.L. Lovett and D.L. Kaplan, Nat. Protoc., 6, 1612 (2011);https://doi.org/10.1038/nprot.2011.379
- M.A. Tomeh, R. Hadianamrei and X.B. Zhao, Pharmaceutics, 11, 429 (2019); https://doi.org/10.3390/pharmaceutics11100494
- H. Wang, S. Duan, M. Wang, S. Wei, Y. Chen, W. Chen, Y. Li and S.Ding, Sens. Actuators B Chem., 320, 128376 (2020);https://doi.org/10.1016/j.snb.2020.128376
- M.S. Lee, C.-S. Hung, D.A. Phillips, C.C. Buck, M.K. Gupta and M.W.Lux, Synth. Syst. Biotechnol., 5, 145 (2020);https://doi.org/10.1016/j.synbio.2020.06.004
- C.Y. Wang, K.L. Xia, Y.Y. Zhang and D.L. Kaplan, Acc. Chem. Res.,52, 2916 (2019); https://doi.org/10.1021/acs.accounts.9b00333
- R.K. Pal, A.A. Farghaly, M.M. Collinson, S.C. Kundu and V.K. Yadavalli, Adv. Mater., 28, 1406 (2016);https://doi.org/10.1002/adma.201504736
- L. Cheng, J. Shao, F. Wang, Z. Li and F. Dai, Mater. Des., 195, 108988 (2020); https://doi.org/10.1016/j.matdes.2020.108988
- Y. Guan, H. You, J. Cai, Q. Zhang, S. Yan and R. You, Carbohydr. Polym.,239, 116232 (2020); https://doi.org/10.1016/j.carbpol.2020.116232
- Y. Feng, X. Li, Q. Zhang, S. Yan, Y. Guo, M. Li and R. You, Carbohydr. Polym., 216, 17 (2019); https://doi.org/10.1016/j.carbpol.2019.04.008
- X. Hu, P. Cebe, A.S. Weiss, F. Omenetto and D.L. Kaplan, Mater. Today, 15, 208 (2012); https://doi.org/10.1016/S1369-7021(12)70091-3
- R. You, J. Zhang, S. Gu, Y. Zhou, X. Li, D. Ye and W. Xu, Mater. Sci.Eng. C, 79, 430 (2017); https://doi.org/10.1016/j.msec.2017.05.063
- M. Ul-Islam, T. Khan and J.K. Park, Carbohydr. Polym., 88, 596 (2012); https://doi.org/10.1016 j.carbpol.2012.01.00626. J.S. Lee, B. Parameswaran, J.P. Lee and S.C. Park, J. Sci. Ind. Res. (India), 67, 865 (2008).
- D. Klemm, B. Heublein, H.P. Fink and A. Bohn, Angew. Chem. Int.Ed., 44, 3358 (2005); https://doi.org/10.1002/anie.200460587
- J. Shokri and K. Adibkia, Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries, In:cellulose-Medical, Pharmaceutical and Electronic Applications, In Tech, pp. 47 (2013).
- S. Singh, V.K. Singh, M. Aamir, M.K. Dubey, J.S. Patel, R.S. Upadhyay and V.K. Gupta, eds.: V. Gupta, Cellulase in Pulp and Paper Industry, In: New and Future Developments in Microbial Biotechnology and Bioengineering, pp.152-162 (2016).
- B. Peng, Z. Yao, X. Wang, M. Crombeen, D.G. Sweeney and K.C. Tam, Green Energy Environ., 5, 37 (2020);https://doi.org/10.1016/j.gee.2019.09.003
- S. Chakraborty, R. Gupta, K.K. Jain, Hemanshi, S. Gautam and R.C. Kuhad, eds.: V. Gupta, Cellulases: application in Wine and Brewery Industry, In: New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 193-200 (2016).
- A.K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999); https://doi.org/10.1016/S0079-6700(98)00018-5
- H. Wissel, C. Mayr and A. Lücke, Org. Geochem., 39, 1545 (2008); https://doi.org/10.1016j.orggeochem.2008.07.014
- G.N. Juárez-Luna, E. Favela-Torres, I.R. Quevedo and N. Batina, Carbohydr. Polym., 220, 110 (2019);https://doi.org/10.1016/j.carbpol.2019.05.058
- Y.L. Zhu, A.M. Zayed, J.-H. Qian, M. Souza and N. Terry, J. Environ. Qual., 28, 339 (1999); https://doi.org/10.2134/jeq1999.00472425002800010042x
- A. Aluigi, C. Vineis, A. Varesano, G. Mazzuchetti, F. Ferrero and C.Tonin, Eur. Polym. J., 44, 2465 (2008);https://doi.org/10.1016/j.eurpolymj.2008.06.004
- N. Ramakrishnan, S. Sharma, A. Gupta and B.Y. Alashwal, Int. J. Biol.Macromol., 111, 352 (2018);https://doi.org/10.1016/j.ijbiomac.2018.01.037
- D.C. Castrillón Martínez, C.L. Zuluaga, A. Restrepo-Osorio and C. Álvarez-López, Procedia Eng., 200, 377 (2017);https://doi.org/10.1016/j.proeng.2017.07.053
- P. Shi and J.C.H. Goh, Powder Technol., 215-216, 85 (2012); https://doi.org/10.1016/j.powtec.2011.09.012
- X. Zhang, J. Feng, X. Liu and J. Zhu, Carbohydr. Polym., 89, 67 (2012); https://doi.org/10.1016/j.carbpol.2012.02.047
References
M. Brodin, M. Vallejos, M.T. Opedal, M.C. Area and G. Chinga-Carrasco, J. Clean. Prod., 162, 646 (2017);https://doi.org/10.1016/j.jclepro.2017.05.209
V. Bertolino, G. Cavallaro, G. Lazzara, M. Merli, S. Milioto, F. Parisi and L. Sciascia, Ind. Eng. Chem. Res., 55, 7373 (2016); https://doi.org/10.1021/acs.iecr.6b01816
D. Kai, M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap and X.J. Loh, Green Chem., 18, 1175 (2016); https://doi.org/10.1039/C5GC02616D
H. Rajabinejad, M. Zoccola, A. Patrucco, A. Montarsolo, G. Rovero and C. Tonin, Text. Res. J., 88, 2415 (2018);https://doi.org/10.1177/0040517517723028
D. Sagnelli, K.H. Hebelstrup, E. Leroy, A. Rolland-Sabaté, S. Guilois, J.J.K. Kirkensgaard, K. Mortensen, D. Lourdin and A. Blennow, Carbohydr. Polym., 152, 398 (2016);https://doi.org/10.1016/j.carbpol.2016.07.039
J.G. Rouse and M.E. Van-Dyke, Materials (Basel), 3, 999 (2010); https://doi.org/10.3390/ma3020999
P.B. Dennis, A.Y. Walker, M.B. Dickerson, D.L. Kaplan and R.R. Naik, Biomacromolecules, 13, 2037 (2012);https://doi.org/10.1021/bm300358g
E.M. Pritchard, P.B. Dennis, F. Omenetto, R.R. Naik and D.L. Kaplan, Biopolymers, 97, 479 (2012); https://doi.org/10.1002/bip.22026
Q. Lu, X. Wang, X. Hu, P. Cebe, F. Omenetto and D.L. Kaplan, Macromol. Biosci., 10, 359 (2010); https://doi.org/10.1002/mabi.200900388
A.B. Li, J.A. Kluge, N.A. Guziewicz, F.G. Omenetto and D.L. Kaplan, J. Control. Rel., 219, 416 (2015);https://doi.org/10.1016/j.jconrel.2015.09.037
M. Gholipourmalekabadi, S. Sapru, A. Samadikuchaksaraei, R. Reis, D.L. Kaplan and S.C. Kundu, Adv. Drug Deliv. Rev., 153, 28 (2020); https://doi.org/10.1016/j.addr.2019.09.003
L.D. Koh, Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh, S.Y. Tee, M. Low, E. Ye, H.D. Yu, Y.W. Zhang and M.-Y. Han, Prog. Polym. Sci., 46, 86 (2015); https://doi.org/10.1016/j.progpolymsci.2015.02.001
C. Vepari and D.L. Kaplan, Prog. Polym. Sci., 32, 991 (2007); https://doi.org/10.1016/j.progpolymsci.2007.05.013
A. Leal-Egana and T. Scheibel, Biotechnol. Appl. Biochem., 55, 155 (2010); https://doi.org/10.1042/BA20090229
D.N. Rockwood, R.C. Preda, T. Yucel, X. Wang, M.L. Lovett and D.L. Kaplan, Nat. Protoc., 6, 1612 (2011);https://doi.org/10.1038/nprot.2011.379
M.A. Tomeh, R. Hadianamrei and X.B. Zhao, Pharmaceutics, 11, 429 (2019); https://doi.org/10.3390/pharmaceutics11100494
H. Wang, S. Duan, M. Wang, S. Wei, Y. Chen, W. Chen, Y. Li and S.Ding, Sens. Actuators B Chem., 320, 128376 (2020);https://doi.org/10.1016/j.snb.2020.128376
M.S. Lee, C.-S. Hung, D.A. Phillips, C.C. Buck, M.K. Gupta and M.W.Lux, Synth. Syst. Biotechnol., 5, 145 (2020);https://doi.org/10.1016/j.synbio.2020.06.004
C.Y. Wang, K.L. Xia, Y.Y. Zhang and D.L. Kaplan, Acc. Chem. Res.,52, 2916 (2019); https://doi.org/10.1021/acs.accounts.9b00333
R.K. Pal, A.A. Farghaly, M.M. Collinson, S.C. Kundu and V.K. Yadavalli, Adv. Mater., 28, 1406 (2016);https://doi.org/10.1002/adma.201504736
L. Cheng, J. Shao, F. Wang, Z. Li and F. Dai, Mater. Des., 195, 108988 (2020); https://doi.org/10.1016/j.matdes.2020.108988
Y. Guan, H. You, J. Cai, Q. Zhang, S. Yan and R. You, Carbohydr. Polym.,239, 116232 (2020); https://doi.org/10.1016/j.carbpol.2020.116232
Y. Feng, X. Li, Q. Zhang, S. Yan, Y. Guo, M. Li and R. You, Carbohydr. Polym., 216, 17 (2019); https://doi.org/10.1016/j.carbpol.2019.04.008
X. Hu, P. Cebe, A.S. Weiss, F. Omenetto and D.L. Kaplan, Mater. Today, 15, 208 (2012); https://doi.org/10.1016/S1369-7021(12)70091-3
R. You, J. Zhang, S. Gu, Y. Zhou, X. Li, D. Ye and W. Xu, Mater. Sci.Eng. C, 79, 430 (2017); https://doi.org/10.1016/j.msec.2017.05.063
M. Ul-Islam, T. Khan and J.K. Park, Carbohydr. Polym., 88, 596 (2012); https://doi.org/10.1016 j.carbpol.2012.01.00626. J.S. Lee, B. Parameswaran, J.P. Lee and S.C. Park, J. Sci. Ind. Res. (India), 67, 865 (2008).
D. Klemm, B. Heublein, H.P. Fink and A. Bohn, Angew. Chem. Int.Ed., 44, 3358 (2005); https://doi.org/10.1002/anie.200460587
J. Shokri and K. Adibkia, Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries, In:cellulose-Medical, Pharmaceutical and Electronic Applications, In Tech, pp. 47 (2013).
S. Singh, V.K. Singh, M. Aamir, M.K. Dubey, J.S. Patel, R.S. Upadhyay and V.K. Gupta, eds.: V. Gupta, Cellulase in Pulp and Paper Industry, In: New and Future Developments in Microbial Biotechnology and Bioengineering, pp.152-162 (2016).
B. Peng, Z. Yao, X. Wang, M. Crombeen, D.G. Sweeney and K.C. Tam, Green Energy Environ., 5, 37 (2020);https://doi.org/10.1016/j.gee.2019.09.003
S. Chakraborty, R. Gupta, K.K. Jain, Hemanshi, S. Gautam and R.C. Kuhad, eds.: V. Gupta, Cellulases: application in Wine and Brewery Industry, In: New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 193-200 (2016).
A.K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999); https://doi.org/10.1016/S0079-6700(98)00018-5
H. Wissel, C. Mayr and A. Lücke, Org. Geochem., 39, 1545 (2008); https://doi.org/10.1016j.orggeochem.2008.07.014
G.N. Juárez-Luna, E. Favela-Torres, I.R. Quevedo and N. Batina, Carbohydr. Polym., 220, 110 (2019);https://doi.org/10.1016/j.carbpol.2019.05.058
Y.L. Zhu, A.M. Zayed, J.-H. Qian, M. Souza and N. Terry, J. Environ. Qual., 28, 339 (1999); https://doi.org/10.2134/jeq1999.00472425002800010042x
A. Aluigi, C. Vineis, A. Varesano, G. Mazzuchetti, F. Ferrero and C.Tonin, Eur. Polym. J., 44, 2465 (2008);https://doi.org/10.1016/j.eurpolymj.2008.06.004
N. Ramakrishnan, S. Sharma, A. Gupta and B.Y. Alashwal, Int. J. Biol.Macromol., 111, 352 (2018);https://doi.org/10.1016/j.ijbiomac.2018.01.037
D.C. Castrillón Martínez, C.L. Zuluaga, A. Restrepo-Osorio and C. Álvarez-López, Procedia Eng., 200, 377 (2017);https://doi.org/10.1016/j.proeng.2017.07.053
P. Shi and J.C.H. Goh, Powder Technol., 215-216, 85 (2012); https://doi.org/10.1016/j.powtec.2011.09.012
X. Zhang, J. Feng, X. Liu and J. Zhu, Carbohydr. Polym., 89, 67 (2012); https://doi.org/10.1016/j.carbpol.2012.02.047