Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rate Enhancements Due to Ultrasound in Isoquinolinium Dichromate and Isoquinolinium Chlorochromate Catalyzed Chlorination of Aromatic Compounds in Presence of KHSO4/KCl
Corresponding Author(s) : K.C. Rajanna
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
Chlorination of aromatic compounds underwent magnificent rate accelerations in isoquinolinium dichromate and isoquinolinium chlorochromate catalyzed chlorination of aromatic hydrocarbons in the presence of KCl and KHSO4. Reaction times reduced highly significantly from 4-5 h in conventional protocol to 30-40 min under sonication, followed by high yields of monochloro derivatives as products with high regioselectivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- (a) P.B.D. De la Mare, Electrophilic Halogenation, Cambridge University Press: Cambridge (1976). (b) R. Taylor, Electrophilic Aromatic Substitution, Wiley: Chichester, pp. 362 (1990). (c) Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, edn 6 (1998).
- (a) N. Narender, P. Srinivasu, S.J. Kulkarni and K.V. Raghavan, Synth. Commun., 32, 279 (2002); https://doi.org/10.1081/SCC-120002013. (b) N. Narender, K.V.V. Krishna Mohan, P. Srinivasu, S.J. Kulkarni and K.V. Raghavan, Indian J. Chem., 43B, 1335 (2004).
- (a) H.A. Muathen, Monatsh. Chem., 130, 1493 (1999); https://doi.org/10.1007/s007060050309. (b) Y. Xiong, H. Duan, X. Meng, Z. Ding and W. Feng, J. Chem., Article ID 2960414 (2016); https://doi.org/10.1155/2016/2960414. (c) K.H. Chung, H.J. Kim, H.R. Kim, and E.K. Ryu, Synth. Commun., 20, 2991 (1990); https://doi.org/10.1080/00397919008051517.
- (a) R.H. Huston and A.H. Neeley, J. Am. Chem. Soc., 57, 2176 (1935); https://doi.org/10.1021/ja01314a040. (b) D.R. Harvey and R.O.C. Norman, J. Chem. Soc., 3604 (1961); https://doi.org/10.1039/jr9610003604.
- (a) M. Hojo and R. Masuda, Synth. Commun., 5, 169 (1975); https://doi.org/10.1080/00397917508064104. (b) L. Delaude and P. Laszlo, J. Org. Chem., 55, 5260 (1990); https://doi.org/10.1021/jo00305a023.
- (a) M. Anbar and D. Ginsburg, Chem. Rev., 54, 925 (1954); https://doi.org/10.1021/cr60172a002. (b) D. Ginsburg, J. Am. Chem. Soc., 73, 2723 (1951); https://doi.org/10.1021/ja01150a084. (c) K. Smith, M. Butters, W.E. Paget and B. Nay, Synthesis, 1155 (1985); https://doi.org/10.1055/s-1985-31461. (d) I. Lengyel, V. Cesare and R. Stephani, Synth. Commun., 28, 1891 (1998); https://doi.org/10.1080/00397919808007021. (e) K. Smith, M. Butters and B. Nay, Synthesis, 1157 (1985); https://doi.org/10.1055/s-1985-31462.
- (a) D. Masilamani and M.M. Rogic, J. Org. Chem., 46, 4486 (1981); https://doi.org/10.1021/jo00335a033. (b) M. Srebnik, R. Mechoulam and I. Yona, J. Chem. Soc., Perkin Trans. I, 1423 (1987); https://doi.org/10.1039/p19870001423. (c) E.M. Kosower, W.J. Cole, G.-S. Wu, D.E. Cardy and G.J. Meisters, J. Org. Chem., 28, 630 (1963); https://doi.org/10.1021/jo01038a007. (d) H. Lübbecke and P. Boldt, Tetrahedron, 34, 1577 (1978); https://doi.org/10.1016/0040-4020(78)80185-9.
- N. Usami, K. Kobana, H. Yoshida, T. Kimura, K. Watanabe, H. Yoshimura and I. Yamamoto, Chem. Pharm. Bull. (Tokyo), 46, 1462 (1998); https://doi.org/10.1248/cpb.46.1462.
- B.P. Bandgar and N.J. Nigal, Synth. Commun., 28, 3225 (1998); https://doi.org/10.1080/00397919808004426.
- V.R. Hegde, G.C.G. Pais, R. Kumar, P. Kumar and B. Pandey, J. Chem. Res. (S), 62 (1996).
- (a) Y. Goldberg and H. Alper, J. Mol. Catal., 88, 377 (1994); https://doi.org/10.1016/0304-5102(93)E0278-O. (b) F.L. Lambert, W.D. Ellis and R.J. Parry, J. Org. Chem., 30, 304 (1965); https://doi.org/10.1021/jo01012a512.
- S. Kajigaeshi, Y. Shinmasu, S. Fujisaki and T. Kakinami, Bull. Chem. Soc. Jpn., 63, 941 (1990); https://doi.org/10.1246/bcsj.63.941.
- F.D. Marsh, W.B. Farnham, D.J. Sam and B.E. Smart, J. Am. Chem. Soc., 104, 4680 (1982); https://doi.org/10.1021/ja00381a032.
- L.J. Andrews and R.M. Keefer, J. Am. Chem. Soc., 82, 5823 (1960); https://doi.org/10.1021/ja01507a014.
- (a) J.R. Lindsay Smith, L.C. McKeer and J.M. Taylor, J. Chem. Soc., Perkin Trans. 2, 1529 (1989); https://doi.org/10.1039/P29890001529. (b) J.R. Lindsay Smith, L.C. McKeer and J.M. Taylor, J. Chem. Soc., Perkin Trans. 2, 385 (1988); https://doi.org/10.1039/P29880000385. (c) J. R. Lindsay Smith, L.C. McKeer, and J.M. Taylor, J. Chem. Soc., Perkin Trans. 2, 1537 (1989); https://doi.org/10.1039/P29890001537.
- P. Bovonsombat and E. Mcnelis, Synthesis, 237 (1993); https://doi.org/10.1055/s-1993-25839.
- (a) E.B. Merkushev, Synthesis, 923 (1988); https://doi.org/10.1055/s-1988-27758. (b) J.K. Stille, Angew. Chem. Int. Ed. Engl., 25, 508 (1986); https://doi.org/10.1002/anie.198605081. (c) A. Suzuki, Pure Appl. Chem., 63, 419 (1991); https://doi.org/10.1351/pac199163030419.
- (a) A. Bachki, F. Foubelo and M. Yus, Tetrahedron, 50, 5139 (1994); https://doi.org/10.1016/S0040-4020(01)90424-7. (b) G.A. Olah, Q. Wang, G. Sandford and G.K. Surya Prakash, J. Org. Chem., 58, 3194 (1993); https://doi.org/10.1021/jo00063a052. (c) B. Akhlaghinia and M. Rahmani, Turk. J. Chem., 33, 67 (2009). (d) J. March, Advanced Organic Chemistry, Wiley-Interscience, New York, edn 4 (2000).
- (a) S. Patel and B.K. Mishra, Tetrahedron, 63, 4367 (2007); https://doi.org/10.1016/j.tet.2007.02.073. (b) B. Tamami and A.R. Kiasat, Iran. Polym. J., 6, 273 (1997). (c) A.F. Luzzio and F.S. Guziec Jr., Org. Prep. Proced. Int., 20, 533 (1988); https://doi.org/10.1080/00304948809356301.
- R. Srinivasan, S. Akila, J. Caroline and K. Balasubramanian, Synth. Commun., 28, 2245 (1998); https://doi.org/10.1080/00397919808007040.
- A.S. Rao, K.C. Rajanna, K.R. Reddy and S. Kulkarni, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 46, 832 (2016); https://doi.org/10.1080/15533174.2014.989596.
- S.V. Ley and C.M.R. Low, Ultrasound in Synthesis, Springer, Berlin, (1989).
- W.T. Richards and A.L. Loomis, J. Am. Chem. Soc., 49, 3086 (1927); https://doi.org/10.1021/ja01411a015.
- T.J. Mason and J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, John Wiley & Sons, New York (1988).
- T.J. Mason, Chem. Soc. Rev., 26, 443 (1997); https://doi.org/10.1039/cs9972600443.
- K.S. Suslick, Ultrasound: Its Chemical, Physical and Biological Effects, VCH, New York (1988).
- V. Singh, K.P. Kaur, A. Khurana and G.L. Kad, Resonance, 3, 56 (1998); https://doi.org/10.1007/BF02836081.
- T.J. Mason, Chemistry with Ultrasound, Elsevier Science Publishers Ltd., London (1990).
- T.J. Mason and D. Peters, Practical Sonochemistry: Power Ultrasound Uses and Applications, Hoorwood Publishing, Chichester, edn 2 (2003).
- M.A. Margulis, Advances in Sonochemistry, JAI Press, London, vol. 1, p. 49 (1990).
- H. Fillion and J.L. Luche, ed.: J.L. Luche, Selected Experiments, In: Synthetic Organic Sonochemistry, Plenum, New York, Chap. 9 (1998).
- R. Cella and H.A. Stefani, Tetrahedron, 65, 2619 (2009); https://doi.org/10.1016/j.tet.2008.12.027.
- P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice Oxford University Press; New York (1998).
- K.B. Wiberg, Oxidations in Organic Chemistry, Part A,Academic Press, New York (1965).
- D. Benson, Mechanisms of Oxidation by Metal Ions, Elsevier, New York (1976).
- J.N. Reddy, S. Giridhar, K.C. Rajanna and P.K. Saiprakash, Transition Met. Chem., 21, 105 (1996); https://doi.org/10.1007/BF00136537.
- D. Sharma, P. Pancharia, K. Vadera and P.K. Sharma, J. Sulfur Chem., 32, 315 (2011); https://doi.org/10.1080/17415993.2011.587519.
- D. Sharma, P. Panchariya, P. Purohit and P.K. Sharma, Oxid. Commun., 35, 821 (2012).
- S. Panwar, S. Pohani, P. Swami, S. Vyas and P.K. Sharma, Eur. Chem. Bull., 2, 904 (2013).
- L. Mathur and A. Choudhary, Asian J. Chem., 26, 2597 (2014); https://doi.org/10.14233/ajchem.2014.15753.
References
(a) P.B.D. De la Mare, Electrophilic Halogenation, Cambridge University Press: Cambridge (1976). (b) R. Taylor, Electrophilic Aromatic Substitution, Wiley: Chichester, pp. 362 (1990). (c) Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, edn 6 (1998).
(a) N. Narender, P. Srinivasu, S.J. Kulkarni and K.V. Raghavan, Synth. Commun., 32, 279 (2002); https://doi.org/10.1081/SCC-120002013. (b) N. Narender, K.V.V. Krishna Mohan, P. Srinivasu, S.J. Kulkarni and K.V. Raghavan, Indian J. Chem., 43B, 1335 (2004).
(a) H.A. Muathen, Monatsh. Chem., 130, 1493 (1999); https://doi.org/10.1007/s007060050309. (b) Y. Xiong, H. Duan, X. Meng, Z. Ding and W. Feng, J. Chem., Article ID 2960414 (2016); https://doi.org/10.1155/2016/2960414. (c) K.H. Chung, H.J. Kim, H.R. Kim, and E.K. Ryu, Synth. Commun., 20, 2991 (1990); https://doi.org/10.1080/00397919008051517.
(a) R.H. Huston and A.H. Neeley, J. Am. Chem. Soc., 57, 2176 (1935); https://doi.org/10.1021/ja01314a040. (b) D.R. Harvey and R.O.C. Norman, J. Chem. Soc., 3604 (1961); https://doi.org/10.1039/jr9610003604.
(a) M. Hojo and R. Masuda, Synth. Commun., 5, 169 (1975); https://doi.org/10.1080/00397917508064104. (b) L. Delaude and P. Laszlo, J. Org. Chem., 55, 5260 (1990); https://doi.org/10.1021/jo00305a023.
(a) M. Anbar and D. Ginsburg, Chem. Rev., 54, 925 (1954); https://doi.org/10.1021/cr60172a002. (b) D. Ginsburg, J. Am. Chem. Soc., 73, 2723 (1951); https://doi.org/10.1021/ja01150a084. (c) K. Smith, M. Butters, W.E. Paget and B. Nay, Synthesis, 1155 (1985); https://doi.org/10.1055/s-1985-31461. (d) I. Lengyel, V. Cesare and R. Stephani, Synth. Commun., 28, 1891 (1998); https://doi.org/10.1080/00397919808007021. (e) K. Smith, M. Butters and B. Nay, Synthesis, 1157 (1985); https://doi.org/10.1055/s-1985-31462.
(a) D. Masilamani and M.M. Rogic, J. Org. Chem., 46, 4486 (1981); https://doi.org/10.1021/jo00335a033. (b) M. Srebnik, R. Mechoulam and I. Yona, J. Chem. Soc., Perkin Trans. I, 1423 (1987); https://doi.org/10.1039/p19870001423. (c) E.M. Kosower, W.J. Cole, G.-S. Wu, D.E. Cardy and G.J. Meisters, J. Org. Chem., 28, 630 (1963); https://doi.org/10.1021/jo01038a007. (d) H. Lübbecke and P. Boldt, Tetrahedron, 34, 1577 (1978); https://doi.org/10.1016/0040-4020(78)80185-9.
N. Usami, K. Kobana, H. Yoshida, T. Kimura, K. Watanabe, H. Yoshimura and I. Yamamoto, Chem. Pharm. Bull. (Tokyo), 46, 1462 (1998); https://doi.org/10.1248/cpb.46.1462.
B.P. Bandgar and N.J. Nigal, Synth. Commun., 28, 3225 (1998); https://doi.org/10.1080/00397919808004426.
V.R. Hegde, G.C.G. Pais, R. Kumar, P. Kumar and B. Pandey, J. Chem. Res. (S), 62 (1996).
(a) Y. Goldberg and H. Alper, J. Mol. Catal., 88, 377 (1994); https://doi.org/10.1016/0304-5102(93)E0278-O. (b) F.L. Lambert, W.D. Ellis and R.J. Parry, J. Org. Chem., 30, 304 (1965); https://doi.org/10.1021/jo01012a512.
S. Kajigaeshi, Y. Shinmasu, S. Fujisaki and T. Kakinami, Bull. Chem. Soc. Jpn., 63, 941 (1990); https://doi.org/10.1246/bcsj.63.941.
F.D. Marsh, W.B. Farnham, D.J. Sam and B.E. Smart, J. Am. Chem. Soc., 104, 4680 (1982); https://doi.org/10.1021/ja00381a032.
L.J. Andrews and R.M. Keefer, J. Am. Chem. Soc., 82, 5823 (1960); https://doi.org/10.1021/ja01507a014.
(a) J.R. Lindsay Smith, L.C. McKeer and J.M. Taylor, J. Chem. Soc., Perkin Trans. 2, 1529 (1989); https://doi.org/10.1039/P29890001529. (b) J.R. Lindsay Smith, L.C. McKeer and J.M. Taylor, J. Chem. Soc., Perkin Trans. 2, 385 (1988); https://doi.org/10.1039/P29880000385. (c) J. R. Lindsay Smith, L.C. McKeer, and J.M. Taylor, J. Chem. Soc., Perkin Trans. 2, 1537 (1989); https://doi.org/10.1039/P29890001537.
P. Bovonsombat and E. Mcnelis, Synthesis, 237 (1993); https://doi.org/10.1055/s-1993-25839.
(a) E.B. Merkushev, Synthesis, 923 (1988); https://doi.org/10.1055/s-1988-27758. (b) J.K. Stille, Angew. Chem. Int. Ed. Engl., 25, 508 (1986); https://doi.org/10.1002/anie.198605081. (c) A. Suzuki, Pure Appl. Chem., 63, 419 (1991); https://doi.org/10.1351/pac199163030419.
(a) A. Bachki, F. Foubelo and M. Yus, Tetrahedron, 50, 5139 (1994); https://doi.org/10.1016/S0040-4020(01)90424-7. (b) G.A. Olah, Q. Wang, G. Sandford and G.K. Surya Prakash, J. Org. Chem., 58, 3194 (1993); https://doi.org/10.1021/jo00063a052. (c) B. Akhlaghinia and M. Rahmani, Turk. J. Chem., 33, 67 (2009). (d) J. March, Advanced Organic Chemistry, Wiley-Interscience, New York, edn 4 (2000).
(a) S. Patel and B.K. Mishra, Tetrahedron, 63, 4367 (2007); https://doi.org/10.1016/j.tet.2007.02.073. (b) B. Tamami and A.R. Kiasat, Iran. Polym. J., 6, 273 (1997). (c) A.F. Luzzio and F.S. Guziec Jr., Org. Prep. Proced. Int., 20, 533 (1988); https://doi.org/10.1080/00304948809356301.
R. Srinivasan, S. Akila, J. Caroline and K. Balasubramanian, Synth. Commun., 28, 2245 (1998); https://doi.org/10.1080/00397919808007040.
A.S. Rao, K.C. Rajanna, K.R. Reddy and S. Kulkarni, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 46, 832 (2016); https://doi.org/10.1080/15533174.2014.989596.
S.V. Ley and C.M.R. Low, Ultrasound in Synthesis, Springer, Berlin, (1989).
W.T. Richards and A.L. Loomis, J. Am. Chem. Soc., 49, 3086 (1927); https://doi.org/10.1021/ja01411a015.
T.J. Mason and J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, John Wiley & Sons, New York (1988).
T.J. Mason, Chem. Soc. Rev., 26, 443 (1997); https://doi.org/10.1039/cs9972600443.
K.S. Suslick, Ultrasound: Its Chemical, Physical and Biological Effects, VCH, New York (1988).
V. Singh, K.P. Kaur, A. Khurana and G.L. Kad, Resonance, 3, 56 (1998); https://doi.org/10.1007/BF02836081.
T.J. Mason, Chemistry with Ultrasound, Elsevier Science Publishers Ltd., London (1990).
T.J. Mason and D. Peters, Practical Sonochemistry: Power Ultrasound Uses and Applications, Hoorwood Publishing, Chichester, edn 2 (2003).
M.A. Margulis, Advances in Sonochemistry, JAI Press, London, vol. 1, p. 49 (1990).
H. Fillion and J.L. Luche, ed.: J.L. Luche, Selected Experiments, In: Synthetic Organic Sonochemistry, Plenum, New York, Chap. 9 (1998).
R. Cella and H.A. Stefani, Tetrahedron, 65, 2619 (2009); https://doi.org/10.1016/j.tet.2008.12.027.
P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice Oxford University Press; New York (1998).
K.B. Wiberg, Oxidations in Organic Chemistry, Part A,Academic Press, New York (1965).
D. Benson, Mechanisms of Oxidation by Metal Ions, Elsevier, New York (1976).
J.N. Reddy, S. Giridhar, K.C. Rajanna and P.K. Saiprakash, Transition Met. Chem., 21, 105 (1996); https://doi.org/10.1007/BF00136537.
D. Sharma, P. Pancharia, K. Vadera and P.K. Sharma, J. Sulfur Chem., 32, 315 (2011); https://doi.org/10.1080/17415993.2011.587519.
D. Sharma, P. Panchariya, P. Purohit and P.K. Sharma, Oxid. Commun., 35, 821 (2012).
S. Panwar, S. Pohani, P. Swami, S. Vyas and P.K. Sharma, Eur. Chem. Bull., 2, 904 (2013).
L. Mathur and A. Choudhary, Asian J. Chem., 26, 2597 (2014); https://doi.org/10.14233/ajchem.2014.15753.