Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Molecular Interactions Using Thermodynamic Excess Properties of Binary Mixture Containing Propiophenone with 1-Propanol, 1-Butanol and 1-Pentanol at Temperatures 303.15, 308.15, 313.15 and 318.15 K
Corresponding Author(s) : D. Ramachandran
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
The current study works out on densities ‘r’, ultrasonic speeds of sound ‘u’ of binary mixtures of propiophenone with n-alcohols e.g., 1-propanol, 1-butanol and 1-pentanol measured over the entire composition range at 303.15 to 318.15 K and at atmospheric pressure 0.1 MPa. The worked out experimental data has been used to calculate various thermodynamic excess parameters like excess molar volume (VE), excess ultrasonic velocity (UE), excess acoustic impedance (ZE), excess intermolecular free-length (LfE), deviation in isentropic compressibility (DKs), deviation in acoustic impedance (DZ) and the computed results were fitted with the Redlich Kister equation to estimate the binary coefficients and standard deviation between experimental and calculated data. Partial molar volume of the binary mixtures was calculated to understand more of the intermolecular reactions in the above binary mixtures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.S. Jyostna and N. Satyanarayana, Indian J. Chem., 44A, 1365 (2005).
- H. Kumar and S. Chahal, J. Solution Chem., 3, 165 (2011); https://doi.org/10.1007/s10953-010-9645-3.
- T.S. Rao, N. Veeraiah and C. Rambabu, Indian J. Pure Appl. Phys., 40, 850 (2002).
- A.A. Mohammad, K.H.A.E. Alkhaldi, M.S. AlTuwaim and A.S. Al-Jimaz, J. Chem. Thermodyn., 56, 106 (2013); https://doi.org/10.1016/j.jct.2012.06.023.
- M. Almasi and H. Iloukhani, J. Chem. Eng. Data, 55, 3918 (2010); https://doi.org/10.1021/je901067c.
- H. Kumar and S. Chahal, J. Solution Chem., 40, 165 (2011); https://doi.org/10.1007/s10953-010-9645-3.
- M.G. Sankar, P. Venkateswarlu, K.S. Kumar and S. Sivarambabu, J. Mol. Liq., 173, 172 (2012); https://doi.org/10.1016/j.molliq.2012.06.010.
- V. Syamala, P. Venkateswarlu and K.S. Kumar, J. Chem. Eng. Data, 51, 928 (2006); https://doi.org/10.1021/je050413l.
- A.B. Sawant, M. Hasan and V.J. Naukudkar, Chem. Sci. Trans., 2, 263 (2012); https://doi.org/10.7598/cst2013.329.
- A.C.H. Chandrasekhar, S.K. Ramanjaneyulu and A. Krishnaiah, Phys. Chem. Liq., 19, 171 (1989); https://doi.org/10.1080/00319108908030616.
- S.J. Tangeda and S. Nallani, J. Chem. Eng. Data, 50, 89 (2005); https://doi.org/10.1021/je040008e.
- K. Saravanakumar, R. Baskaran and T.R. Kubendran, J. Korean Chem. Soc., 56, 424 (2012); https://doi.org/10.5012/jkcs.2012.56.4.424.
- S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russian J. Phys. Chem. A, 89, 1828 (2015); https://doi.org/10.1134/S0036024415100040.
- T. Savithajyostna, G. Sowjanya, E. Jayanthi Rani, N. Raghuram, G. Ramesh and R. Suresh, Mater. Today: Proceed., 3, 4070 (2016); https://doi.org/10.1016/j.matpr.2016.11.075.
- A. Ali, A.K. Nain, V.K. Sharma and S. Ahmad, Indian J. Pure Appl. Phys., 42, 666 (2004).
- P.S. Nikam, L.N. Shirsat and M. Hasan, J. Chem. Eng. Data, 43, 732 (1998); https://doi.org/10.1021/je980028e.
- P.S. Nikam, M.C. Jadhav and M. Hasan, J. Mol. Liq., 76, 1 (1998); https://doi.org/10.1016/S0167-7322(97)00051-2.
- P.S. Nikam, M.C. Jadhav and M. Hasan, Acustica Acta Acoust., 83, 86 (1997).
- P.S. Nikam, T.R. Mahale and M. Hasan, Acustica Acta Acoust., 84, 579 (1998).
- P.S. Nikam, B.S. Jagdale, A.B. Sawant and M. Hasan, Acoust. Lett., 22, 199 (1999).
- M. Geppert-Rybczynska, A. Heintz, J.K. Lehmann and A. Golus, J. Chem. Eng. Data, 55, 4114 (2010); https://doi.org/10.1021/je100315g.
- M. Hasan, U.B. Kadam, A.P. Hiray and A.B. Sawant, J. Chem. Eng. Data, 51, 671 (2006); https://doi.org/10.1021/je0504459.
- U.B. Kadam,A.P. Hiray, A.B. Sawant and M. Hasan, J. Chem. Thermodyn., 38, 1675 (2006); https://doi.org/10.1016/j.jct.2006.03.010.
- M. Hasan, D.F. Shirude, A.P. Hiray, A.B. Sawant and U.B. Kadam, Fluid Phase Equilib., 252, 88 (2007); https://doi.org/10.1016/j.fluid.2007.01.001.
- M. Hasan, D.F. Shirude, A.P. Hiray, U.B. Kadam and A.B. Sawant, J. Chem. Eng. Data, 51, 1922 (2006); https://doi.org/10.1021/je0602519.
- M. Hasan, D.F. Shirude, A.P. Hiray, U.B. Kadam and A.B. Sawant, J. Mol. Liq., 135, 32 (2007); https://doi.org/10.1016/j.molliq.2006.10.012.
- G.S. Manukonda, P. Venkatalakshami and K. Rambabu, Int. J. Phys. Res., 3, 5 (2013).
- M. Gowrisankar, S. Sivarambabu, P. Venkateswarlu and K.S. Kumar, Bull. Korean Chem. Soc., 33, 1686 (2012); https://doi.org/10.5012/bkcs.2012.33.5.1686.
- J. Timmermanns, Physico-Chemical Constants of Pure organic compounds; Elsevier publications; Amesterdam, 1950; Vol.1.
- L. Venkatramana, K. Sreenivasulu, K. Sivakumar and K.D. Reddy, J. Therm. Anal. Calorim., 115, 1829 (2014); https://doi.org/10.1007/s10973-013-3473-9.
- S. Singh, M. Aznar and N. Deenadayalu, J. Chem. Thermodyn., 57, 238 (2013); https://doi.org/10.1016/j.jct.2012.08.030.
- S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russian J. Phys. Chem., 89, 1828 (2015); https://doi.org/10.1134/S0036024415100040.
- S.J. Tangeda, S. Boodida and S. Nallani, J. Chem. Thermodyn., 38, 1438 (2006); https://doi.org/10.1016/j.jct.2006.01.009.
- U.B. Kadam, A.P. Hiray, A.B. Sawant and M. Hasan, J. Chem. Eng. Data, 51, 60 (2006); https://doi.org/10.1021/je050169y.
- T.M. Aminabhavi and V.B. Patil, J. Chem. Eng. Data, 43, 497 (1998); https://doi.org/10.1021/je980031y.
- M.V. Prabhakara Rao and P.R. Naidu, J. Chem. Thermodyn., 8, 73 (1976); https://doi.org/10.1016/0021-9614(76)90153-1.
- Sk.F. Babavali, D. Punyaseshudu, K. Narendra, Ch.S. Yesaswi and Ch. Srinivasu, J. Mol. Liq., 224, 47 (2016); https://doi.org/10.1016/j.molliq.2016.09.079.
- C.M. Tridevi and V.A. Rana, Int. J. Sci. Res., 6, 48 (2015).
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purifications, Wiley Interscience, New York, edn 4 (1986).
- A. Pal, R. Gaba and H. Kumar, J. Solution Chem., 40, 786 (2011); https://doi.org/10.1007/s10953-011-9688-0.
- E. Vercher, A.V. Orchilles, P.J. Miguel and A. Martinez-Andreu, J. Chem. Eng. Data, 52, 1468 (2007); https://doi.org/10.1021/je7001804.
- M.S. Al-Tuwaim, H.A.E.K. Alkhaldi, S.A. Al-Jimaz and A.A. Mohammad, J. Chem. Thermodyn., 48, 39 (2012); https://doi.org/10.1016/j.jct.2011.12.002.
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic SolVents, Physical Properties and Methods of Purification, Techniques of Chemistry, Wiley-Interscience: New York, edn 4, vol. II (1986).
- J. Peleteiro, D. González-Salgado, C.A. Cerdeirina, J.L. Valencia and L. Romani, Fluid Phase Equilib., 191, 83 (2001); https://doi.org/10.1016/S0378-3812(01)00614-8.
- Z. Shan and A.-F.A. Asfour, Fluid Phase Equilib., 143, 253 (1998); https://doi.org/10.1016/S0378-3812(97)00267-7.
- A.S. Al-Jimaz, J.A. Al-Kandary and A.-H.M. Abdul-Latif, Fluid Phase Equilib., 218, 247 (2004); https://doi.org/10.1016/j.fluid.2003.12.007.
- P.S. Nikam, M.C. Jadhav and M. Hasan, J. Chem. Eng. Data, 40, 931 (1995); https://doi.org/10.1021/je00020a044.
- B. Jacobson, J. Chem. Phys., 20, 927 (1952); https://doi.org/10.1063/1.1700615.
- R. Nutsch-Kuhnkies, Acustica, 15, 383 (1965).
- G.V. Rama Rao, A.V. Sarma and C. Rambabu, Indian J. Pure Appl. Phys., 42, 820 (2004).
- K.V. Ramana Reddy, K. Rambabu, T. Devarajulu and A. Krishnaiah, Phys. Chem. Liq., 31, 9 (1996); https://doi.org/10.1080/00319109608029552.
- R.S. Sah, B. Sinha and M.N. Roy, J. Chem. Eng. Data, 55, 4536 (2010); https://doi.org/10.1021/je100594u.
- M. Hasan, A.P. Hiray, U.B. Kadam, D.F. Shirude, K.J. Kurhe and A.B. Sawant, J. Solution Chem., 40, 415 (2011); https://doi.org/10.1007/s10953-011-9657-7.
- O. Kiyohara and G.C. Benson, J. Chem. Thermodyn., 11, 861 (1979); https://doi.org/10.1016/0021-9614(79)90067-3.
- R.D. Rai, R.K. Shukla,A.K. Shukla and J.D. Pandey, J. Chem. Thermodyn., 21, 125 (1989); https://doi.org/10.1016/0021-9614(89)90122-5.
- R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61, 2102 (1965); https://doi.org/10.1039/tf9656102102.
- K. Ramamoorthy and S. Alwan, Curr. Sci., 47, 334 (1978).
- A.K. Nain, J. Mol. Liq., 140, 108 (2008); https://doi.org/10.1016/j.molliq.2008.01.016.
- H. Wang, W. Liu and J. Huang, J. Chem. Thermodyn., 36, 743 (2004); https://doi.org/10.1016/j.jct.2004.04.004.
- B. Hawrylak, K. Gracie and R. Palepu, J. Solution Chem., 27, 17 (1998); https://doi.org/10.1023/A:1022636511542.
- P.K. Pandey, V.K. Pandey, A. Awasthi, A.K. Nain and A. Awasthi, Thermochim. Acta, 586, 58 (2014); https://doi.org/10.1016/j.tca.2014.03.038.
References
T.S. Jyostna and N. Satyanarayana, Indian J. Chem., 44A, 1365 (2005).
H. Kumar and S. Chahal, J. Solution Chem., 3, 165 (2011); https://doi.org/10.1007/s10953-010-9645-3.
T.S. Rao, N. Veeraiah and C. Rambabu, Indian J. Pure Appl. Phys., 40, 850 (2002).
A.A. Mohammad, K.H.A.E. Alkhaldi, M.S. AlTuwaim and A.S. Al-Jimaz, J. Chem. Thermodyn., 56, 106 (2013); https://doi.org/10.1016/j.jct.2012.06.023.
M. Almasi and H. Iloukhani, J. Chem. Eng. Data, 55, 3918 (2010); https://doi.org/10.1021/je901067c.
H. Kumar and S. Chahal, J. Solution Chem., 40, 165 (2011); https://doi.org/10.1007/s10953-010-9645-3.
M.G. Sankar, P. Venkateswarlu, K.S. Kumar and S. Sivarambabu, J. Mol. Liq., 173, 172 (2012); https://doi.org/10.1016/j.molliq.2012.06.010.
V. Syamala, P. Venkateswarlu and K.S. Kumar, J. Chem. Eng. Data, 51, 928 (2006); https://doi.org/10.1021/je050413l.
A.B. Sawant, M. Hasan and V.J. Naukudkar, Chem. Sci. Trans., 2, 263 (2012); https://doi.org/10.7598/cst2013.329.
A.C.H. Chandrasekhar, S.K. Ramanjaneyulu and A. Krishnaiah, Phys. Chem. Liq., 19, 171 (1989); https://doi.org/10.1080/00319108908030616.
S.J. Tangeda and S. Nallani, J. Chem. Eng. Data, 50, 89 (2005); https://doi.org/10.1021/je040008e.
K. Saravanakumar, R. Baskaran and T.R. Kubendran, J. Korean Chem. Soc., 56, 424 (2012); https://doi.org/10.5012/jkcs.2012.56.4.424.
S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russian J. Phys. Chem. A, 89, 1828 (2015); https://doi.org/10.1134/S0036024415100040.
T. Savithajyostna, G. Sowjanya, E. Jayanthi Rani, N. Raghuram, G. Ramesh and R. Suresh, Mater. Today: Proceed., 3, 4070 (2016); https://doi.org/10.1016/j.matpr.2016.11.075.
A. Ali, A.K. Nain, V.K. Sharma and S. Ahmad, Indian J. Pure Appl. Phys., 42, 666 (2004).
P.S. Nikam, L.N. Shirsat and M. Hasan, J. Chem. Eng. Data, 43, 732 (1998); https://doi.org/10.1021/je980028e.
P.S. Nikam, M.C. Jadhav and M. Hasan, J. Mol. Liq., 76, 1 (1998); https://doi.org/10.1016/S0167-7322(97)00051-2.
P.S. Nikam, M.C. Jadhav and M. Hasan, Acustica Acta Acoust., 83, 86 (1997).
P.S. Nikam, T.R. Mahale and M. Hasan, Acustica Acta Acoust., 84, 579 (1998).
P.S. Nikam, B.S. Jagdale, A.B. Sawant and M. Hasan, Acoust. Lett., 22, 199 (1999).
M. Geppert-Rybczynska, A. Heintz, J.K. Lehmann and A. Golus, J. Chem. Eng. Data, 55, 4114 (2010); https://doi.org/10.1021/je100315g.
M. Hasan, U.B. Kadam, A.P. Hiray and A.B. Sawant, J. Chem. Eng. Data, 51, 671 (2006); https://doi.org/10.1021/je0504459.
U.B. Kadam,A.P. Hiray, A.B. Sawant and M. Hasan, J. Chem. Thermodyn., 38, 1675 (2006); https://doi.org/10.1016/j.jct.2006.03.010.
M. Hasan, D.F. Shirude, A.P. Hiray, A.B. Sawant and U.B. Kadam, Fluid Phase Equilib., 252, 88 (2007); https://doi.org/10.1016/j.fluid.2007.01.001.
M. Hasan, D.F. Shirude, A.P. Hiray, U.B. Kadam and A.B. Sawant, J. Chem. Eng. Data, 51, 1922 (2006); https://doi.org/10.1021/je0602519.
M. Hasan, D.F. Shirude, A.P. Hiray, U.B. Kadam and A.B. Sawant, J. Mol. Liq., 135, 32 (2007); https://doi.org/10.1016/j.molliq.2006.10.012.
G.S. Manukonda, P. Venkatalakshami and K. Rambabu, Int. J. Phys. Res., 3, 5 (2013).
M. Gowrisankar, S. Sivarambabu, P. Venkateswarlu and K.S. Kumar, Bull. Korean Chem. Soc., 33, 1686 (2012); https://doi.org/10.5012/bkcs.2012.33.5.1686.
J. Timmermanns, Physico-Chemical Constants of Pure organic compounds; Elsevier publications; Amesterdam, 1950; Vol.1.
L. Venkatramana, K. Sreenivasulu, K. Sivakumar and K.D. Reddy, J. Therm. Anal. Calorim., 115, 1829 (2014); https://doi.org/10.1007/s10973-013-3473-9.
S. Singh, M. Aznar and N. Deenadayalu, J. Chem. Thermodyn., 57, 238 (2013); https://doi.org/10.1016/j.jct.2012.08.030.
S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russian J. Phys. Chem., 89, 1828 (2015); https://doi.org/10.1134/S0036024415100040.
S.J. Tangeda, S. Boodida and S. Nallani, J. Chem. Thermodyn., 38, 1438 (2006); https://doi.org/10.1016/j.jct.2006.01.009.
U.B. Kadam, A.P. Hiray, A.B. Sawant and M. Hasan, J. Chem. Eng. Data, 51, 60 (2006); https://doi.org/10.1021/je050169y.
T.M. Aminabhavi and V.B. Patil, J. Chem. Eng. Data, 43, 497 (1998); https://doi.org/10.1021/je980031y.
M.V. Prabhakara Rao and P.R. Naidu, J. Chem. Thermodyn., 8, 73 (1976); https://doi.org/10.1016/0021-9614(76)90153-1.
Sk.F. Babavali, D. Punyaseshudu, K. Narendra, Ch.S. Yesaswi and Ch. Srinivasu, J. Mol. Liq., 224, 47 (2016); https://doi.org/10.1016/j.molliq.2016.09.079.
C.M. Tridevi and V.A. Rana, Int. J. Sci. Res., 6, 48 (2015).
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purifications, Wiley Interscience, New York, edn 4 (1986).
A. Pal, R. Gaba and H. Kumar, J. Solution Chem., 40, 786 (2011); https://doi.org/10.1007/s10953-011-9688-0.
E. Vercher, A.V. Orchilles, P.J. Miguel and A. Martinez-Andreu, J. Chem. Eng. Data, 52, 1468 (2007); https://doi.org/10.1021/je7001804.
M.S. Al-Tuwaim, H.A.E.K. Alkhaldi, S.A. Al-Jimaz and A.A. Mohammad, J. Chem. Thermodyn., 48, 39 (2012); https://doi.org/10.1016/j.jct.2011.12.002.
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic SolVents, Physical Properties and Methods of Purification, Techniques of Chemistry, Wiley-Interscience: New York, edn 4, vol. II (1986).
J. Peleteiro, D. González-Salgado, C.A. Cerdeirina, J.L. Valencia and L. Romani, Fluid Phase Equilib., 191, 83 (2001); https://doi.org/10.1016/S0378-3812(01)00614-8.
Z. Shan and A.-F.A. Asfour, Fluid Phase Equilib., 143, 253 (1998); https://doi.org/10.1016/S0378-3812(97)00267-7.
A.S. Al-Jimaz, J.A. Al-Kandary and A.-H.M. Abdul-Latif, Fluid Phase Equilib., 218, 247 (2004); https://doi.org/10.1016/j.fluid.2003.12.007.
P.S. Nikam, M.C. Jadhav and M. Hasan, J. Chem. Eng. Data, 40, 931 (1995); https://doi.org/10.1021/je00020a044.
B. Jacobson, J. Chem. Phys., 20, 927 (1952); https://doi.org/10.1063/1.1700615.
R. Nutsch-Kuhnkies, Acustica, 15, 383 (1965).
G.V. Rama Rao, A.V. Sarma and C. Rambabu, Indian J. Pure Appl. Phys., 42, 820 (2004).
K.V. Ramana Reddy, K. Rambabu, T. Devarajulu and A. Krishnaiah, Phys. Chem. Liq., 31, 9 (1996); https://doi.org/10.1080/00319109608029552.
R.S. Sah, B. Sinha and M.N. Roy, J. Chem. Eng. Data, 55, 4536 (2010); https://doi.org/10.1021/je100594u.
M. Hasan, A.P. Hiray, U.B. Kadam, D.F. Shirude, K.J. Kurhe and A.B. Sawant, J. Solution Chem., 40, 415 (2011); https://doi.org/10.1007/s10953-011-9657-7.
O. Kiyohara and G.C. Benson, J. Chem. Thermodyn., 11, 861 (1979); https://doi.org/10.1016/0021-9614(79)90067-3.
R.D. Rai, R.K. Shukla,A.K. Shukla and J.D. Pandey, J. Chem. Thermodyn., 21, 125 (1989); https://doi.org/10.1016/0021-9614(89)90122-5.
R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61, 2102 (1965); https://doi.org/10.1039/tf9656102102.
K. Ramamoorthy and S. Alwan, Curr. Sci., 47, 334 (1978).
A.K. Nain, J. Mol. Liq., 140, 108 (2008); https://doi.org/10.1016/j.molliq.2008.01.016.
H. Wang, W. Liu and J. Huang, J. Chem. Thermodyn., 36, 743 (2004); https://doi.org/10.1016/j.jct.2004.04.004.
B. Hawrylak, K. Gracie and R. Palepu, J. Solution Chem., 27, 17 (1998); https://doi.org/10.1023/A:1022636511542.
P.K. Pandey, V.K. Pandey, A. Awasthi, A.K. Nain and A. Awasthi, Thermochim. Acta, 586, 58 (2014); https://doi.org/10.1016/j.tca.2014.03.038.