Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies on Inclusion Complexes of β-Cyclodextrin with Some Metal Complexes of Isatinylsemicarbazone and Isatinylthiosemicarbazone
Corresponding Author(s) : Rajeev Kumar
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
The complexes of Co(II), Ni(II), Zn(II) and Cd(II) with isatinylsemicarbazone (IstscabH) and isatinylthiosemicarbazone (IsttscabH) of composition ML2·2H2O [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and ML2 [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have been synthesized and their antibacterial activity has been investigated. Their inclusion complexes with β-cyclodextrin (β-CD) having composition [ML2(β-CD)·2H2O] or M(C60H88N8O39S2)], [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and [ML2(β-CD) or M(C60H84N6O37S2)], [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have also been isolated in solid states. All the synthesized metal complexes have been characterized by analytical data, molar conductance, magnetic susceptibility, electronic and infrared spectral studies. The tetrahedral geometry for Zn(II) and Cd(II) and octahederal geometry for Co(II) and Ni(II) have been assigned on the basis of magnetic susceptibility, UV electronic transitions and IR spectral bands assignments. The structures are retained in inclusion products. A biological activity of Schiff bases, their metal complexes and inclusion products for bacteria Escherichia coli, Bacillus subtilis and Staphylococcus aureus have been screened and activity explained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Kiran, M. Sarangapani, T. Gouthami and A.R.N. Reddy, Toxicol. Environ. Chem., 95, 367 (2013); https://doi.org/10.1080/02772248.2013.777605
- T. Aboul-Fadl, F.A. Bin-Jubair and O. Aboul-Wafa, Eur. J. Med. Chem., 45, 4578 (2010); https://doi.org/10.1016/j.ejmech.2010.07.020
- R.H. Hans, I.J.F. Wiid, P.D. van Helden, B. Wan, S.G. Franzblau, J. Gut, P.J. Rosenthal and K. Chibal, Bioorg. Med. Chem. Lett., 21, 2055 (2011); https://doi.org/10.1016/j.bmcl.2011.02.008
- M. Pal and N.K. Sharma, Int. J. Adv. Sci. Res., 2, 35 (2011).
- B. Bhrigu, D. Pathak, N. Siddiqui, M.S. Alam and W. Ahsan, Int. J. Pharm. Sci. Drug Res., 2, 229 (2010).
- M. Verma, S.N. Pandeya, K.N. Singh and J.P. Stables, Acta Pharm., 54, 49 (2004).
- I.J. Kang, L.W. Wang, T.A. Hsu, A. Yueh, C.C. Lee, Y.C. Lee, C.-Y. Lee, Y.-S. Chao, S.-R. Shih and J.-H. Chern, Bioorg. Med. Chem. Lett., 21, 1948 (2011); https://doi.org/10.1016/j.bmcl.2011.02.037
- R.A. Harvey, Lippincott’s Illustrated Reviews Pharmacology, edn 5, pp. 339-350 (2012).
- S.K. Sridhar, S.N. Pandeya, J.P. Stables and A. Ramesh, Eur. J. Pharm. Sci., 16, 129 (2002); https://doi.org/10.1016/S0928-0987(02)00077-5
- A.S. Grewal, Int. J. Pharm. Res., 6, 111 (2014).
- J.F.M. Silva, S.J. Garden and A.C. Pinto, J. Braz. Chem. Soc., 12, 273 (2001); https://doi.org/10.1590/S0103-50532001000300002
- W. Chu, J. Zhang, C. Zeng, J. Rothfuss, Z. Tu, Y. Chu, D.E. Reichert, M.J. Welch and R.H. Mach, J. Med. Chem., 48, 7637 (2005); https://doi.org/10.1021/jm0506625
- P. Pakravan, S. Kashanian, M.M. Khodaei and F.J. Harding, Pharmacol. Rep., 65, 313 (2013); https://doi.org/10.1016/S1734-1140(13)71007-7
- D. Sriram, T.R. Bal and P. Yogeeswari, Med. Chem. Res., 14, 211 (2005); https://doi.org/10.1007/s00044-005-0135-x
- S.N. Pandeya and A.S. Raja, J. Pharm. Sci., 5, 266 (2002).
- S.N. Pandeya, P. Yogeeswari and J.P. Stables, Eur. J. Med. Chem., 35, 879 (2000); https://doi.org/10.1016/S0223-5234(00)01169-7
- K. Swathi and M. Sarangapani, Asian J. Pharm. Clin. Res., 5, 197 (2012).
- S.N. Pandeya, D. Sriram, P. Yogeeswari and J.P. Stables, Pharmazie, 56, 875 (2001).
- F.A. Khan and A. Maalik, Trop. J. Pharm. Res., 14, 1937 (2015); https://doi.org/10.4314/tjpr.v14i10.28
- L. Hou, C. Ju, J. Zhang, J. Song, Y. Ge and W. Yue, Eur. J. Pharmacol., 589, 27 (2008); https://doi.org/10.1016/j.ejphar.2008.04.061
- A.C. Angell, Science, 267, 1924 (1995); https://doi.org/10.1126/science.267.5206.1924
- R.C. Dubey and D.K. Maheshwari, Practical Microbiology, S. Chand & Company Ltd., New Delhi, pp. 172-183 (2002).
- R.K. Dubey, U.K. Dubey and S.K. Mishra, J. Coord. Chem., 64, 2292 (2011); https://doi.org/10.1080/00958972.2011.594886
- M. Chandrakala, Asian J. Chem., 31, 73 (2019); https://doi.org/10.14233/ajchem.2019.21518
- N. Kumar, P.L. Kachre and N. Kant, J. Indian Chem. Soc., 57, 98 (1980).
- F.G. Baddar, O.M.M. Hilal and S. Sugden, J. Chem. Soc., 132 (1949); https://doi.org/10.1039/jr9490000132
- R.S. Nyholm and B.N. Figgis, Prog. Inorg. Chem., 6, 37 (1965).
- R.S. Drago, Physical Methods in Inorganic Chemistry, Affiliated EastWest Press: New Delhi, pp. 519-577 (1996).
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, pp. 763-791 (1968).
- F.A. Cotton, D.L.M. Goodgame and M. Goodgame, J. Am. Chem. Soc., 83, 4690 (1961); https://doi.org/10.1021/ja01484a002
- L.J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley & Sons, pp. 64-82 (1957).
- K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley: New York, edn 6, pp. 173-210 (2008).
- P. Jain, D. Kumar and S. Chandra, Asian J. Chem., 31, 1 (2019); https://doi.org/10.14233/ajchem.2019.21475
References
G. Kiran, M. Sarangapani, T. Gouthami and A.R.N. Reddy, Toxicol. Environ. Chem., 95, 367 (2013); https://doi.org/10.1080/02772248.2013.777605
T. Aboul-Fadl, F.A. Bin-Jubair and O. Aboul-Wafa, Eur. J. Med. Chem., 45, 4578 (2010); https://doi.org/10.1016/j.ejmech.2010.07.020
R.H. Hans, I.J.F. Wiid, P.D. van Helden, B. Wan, S.G. Franzblau, J. Gut, P.J. Rosenthal and K. Chibal, Bioorg. Med. Chem. Lett., 21, 2055 (2011); https://doi.org/10.1016/j.bmcl.2011.02.008
M. Pal and N.K. Sharma, Int. J. Adv. Sci. Res., 2, 35 (2011).
B. Bhrigu, D. Pathak, N. Siddiqui, M.S. Alam and W. Ahsan, Int. J. Pharm. Sci. Drug Res., 2, 229 (2010).
M. Verma, S.N. Pandeya, K.N. Singh and J.P. Stables, Acta Pharm., 54, 49 (2004).
I.J. Kang, L.W. Wang, T.A. Hsu, A. Yueh, C.C. Lee, Y.C. Lee, C.-Y. Lee, Y.-S. Chao, S.-R. Shih and J.-H. Chern, Bioorg. Med. Chem. Lett., 21, 1948 (2011); https://doi.org/10.1016/j.bmcl.2011.02.037
R.A. Harvey, Lippincott’s Illustrated Reviews Pharmacology, edn 5, pp. 339-350 (2012).
S.K. Sridhar, S.N. Pandeya, J.P. Stables and A. Ramesh, Eur. J. Pharm. Sci., 16, 129 (2002); https://doi.org/10.1016/S0928-0987(02)00077-5
A.S. Grewal, Int. J. Pharm. Res., 6, 111 (2014).
J.F.M. Silva, S.J. Garden and A.C. Pinto, J. Braz. Chem. Soc., 12, 273 (2001); https://doi.org/10.1590/S0103-50532001000300002
W. Chu, J. Zhang, C. Zeng, J. Rothfuss, Z. Tu, Y. Chu, D.E. Reichert, M.J. Welch and R.H. Mach, J. Med. Chem., 48, 7637 (2005); https://doi.org/10.1021/jm0506625
P. Pakravan, S. Kashanian, M.M. Khodaei and F.J. Harding, Pharmacol. Rep., 65, 313 (2013); https://doi.org/10.1016/S1734-1140(13)71007-7
D. Sriram, T.R. Bal and P. Yogeeswari, Med. Chem. Res., 14, 211 (2005); https://doi.org/10.1007/s00044-005-0135-x
S.N. Pandeya and A.S. Raja, J. Pharm. Sci., 5, 266 (2002).
S.N. Pandeya, P. Yogeeswari and J.P. Stables, Eur. J. Med. Chem., 35, 879 (2000); https://doi.org/10.1016/S0223-5234(00)01169-7
K. Swathi and M. Sarangapani, Asian J. Pharm. Clin. Res., 5, 197 (2012).
S.N. Pandeya, D. Sriram, P. Yogeeswari and J.P. Stables, Pharmazie, 56, 875 (2001).
F.A. Khan and A. Maalik, Trop. J. Pharm. Res., 14, 1937 (2015); https://doi.org/10.4314/tjpr.v14i10.28
L. Hou, C. Ju, J. Zhang, J. Song, Y. Ge and W. Yue, Eur. J. Pharmacol., 589, 27 (2008); https://doi.org/10.1016/j.ejphar.2008.04.061
A.C. Angell, Science, 267, 1924 (1995); https://doi.org/10.1126/science.267.5206.1924
R.C. Dubey and D.K. Maheshwari, Practical Microbiology, S. Chand & Company Ltd., New Delhi, pp. 172-183 (2002).
R.K. Dubey, U.K. Dubey and S.K. Mishra, J. Coord. Chem., 64, 2292 (2011); https://doi.org/10.1080/00958972.2011.594886
M. Chandrakala, Asian J. Chem., 31, 73 (2019); https://doi.org/10.14233/ajchem.2019.21518
N. Kumar, P.L. Kachre and N. Kant, J. Indian Chem. Soc., 57, 98 (1980).
F.G. Baddar, O.M.M. Hilal and S. Sugden, J. Chem. Soc., 132 (1949); https://doi.org/10.1039/jr9490000132
R.S. Nyholm and B.N. Figgis, Prog. Inorg. Chem., 6, 37 (1965).
R.S. Drago, Physical Methods in Inorganic Chemistry, Affiliated EastWest Press: New Delhi, pp. 519-577 (1996).
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, pp. 763-791 (1968).
F.A. Cotton, D.L.M. Goodgame and M. Goodgame, J. Am. Chem. Soc., 83, 4690 (1961); https://doi.org/10.1021/ja01484a002
L.J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley & Sons, pp. 64-82 (1957).
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley: New York, edn 6, pp. 173-210 (2008).
P. Jain, D. Kumar and S. Chandra, Asian J. Chem., 31, 1 (2019); https://doi.org/10.14233/ajchem.2019.21475