Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation of Ultrasonic Velocity Theories on Binary Liquid Mixtures of Propiophenone with Isomeric Xylenes at Temperatures (T = 303.15 to 318.15 K)
Corresponding Author(s) : D. Ramachandran
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
Densities (ρ), ultrasonic speeds of sound (u) of binary mixtures containing propiophenone with o-xylene, m-xylene and p-xylene were measured over the entire composition range at temperatures from 303.15-318.15 K and at atmospheric pressure 0.1 MPa. Experimental data of ultrasonic velocity was used to compute the theoretical velocities by using the various theories like Nomoto’s relation (UNOM), impedance relation (UIMP), Van Dael and Vangeel’s relation (UVDV), Rao’s specific velocity relation (URAO), Jouyban-Acree’s (UJOE) and Junjie’s theory (UJUN). The results are in good agreement with the experimental data. The relative percentage error, chi square test for goodness of fit and the molecular interaction parameter (α) values for non-ideality in the binary mixtures were computed and analyzed in terms of intermolecular interactions between the molecules of the binary mixtures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Santhi, P.L. Sabarathinam, J. Madhumitha, G. Alamelumangai and M. Emayavaramban, Int. Lett. Chem. Phys. Astron., 7, 18 (2013); https://doi.org/10.18052/www.scipress.com/ILCPA.7.18
- S. Nithiyanantham, Int. Nano Lett., 9, 89 (2019); https://doi.org/10.1007/s40089-019-0269-3
- R.T. Lagemann and W.S. Dunbar, J. Phys. Chem., 49, 428 (1945); https://doi.org/10.1021/j150443a003
- J.A. Al-Kandary, A.S. Al-Jimaz and A.H.M. Abdul-Latif, J. Chem. Thermodyn., 38, 1351 (2006); https://doi.org/10.1016/j.jct.2006.02.001
- S. Singh, B.P.S. Sethi, R.C. Katyal and V.K. Rattan, J. Chem. Eng. Data, 50, 125 (2005); https://doi.org/10.1021/je049793l
- G. Moumouzias, C. Ritzoulis and G. Ritzoulis, J. Chem. Eng. Data, 44, 1187 (1999); https://doi.org/10.1021/je990094w
- J.A. Al-Kandary, A.S. Al-Jimaz and A.H.M. Abdul-Latif, J. Chem. Eng. Data, 51, 2074 (2006); https://doi.org/10.1021/je060170c
- M. Habibullah, K.N. Das, I.M.M. Rahman, M.A. Uddin, K. Saifuddin, K. Iwakabe and H. Hasegawa, J. Chem. Eng. Data, 55, 5370 (2010); https://doi.org/10.1021/je100823t
- A. Ali and F. Nabi, Acta Phys.-Chim. Sinica, 24, 47 (2008); https://doi.org/10.1016/S1872-1508(08)60005-4
- M. Indhumathi, G. Meenakshi, V.J. Priyadharshini, R. Kayalvizhi and S. Thiyagaraj, J. Chem. Pharm. Res., 4, 4245 (2012).
- S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russ. J. Phys. Chem. A, 89, 1828 (2015); https://doi.org/10.1134/S0036024415100040
- Y. Zhou, J. Wu and E.W. Lemmon, J. Phys. Chem. Ref. Data, 41, 023103 (2012); https://doi.org/10.1063/1.3703506
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, Wiley-Interscience: New York, edn 4 (1986).
- A. Weissberger, E.S. Proskauer, J.A. Riddick and E.E. Toops, Organic Solvents: Physical Properties and Methods of Purification, Wiley Interscience, edn 2 (1955).
- O. Nomoto, J. Phys. Soc. Jpn., 13, 1528 (1958); https://doi.org/10.1143/JPSJ.13.1528
- W. van Dael and E. Vangeel, Proceeding of First International Conference on Colorimetry Thermodynamics, Warsaw, p. 555 (1969).
- W. Vandeel, Experimental thermodynamics Butterworths & Co. Ltd: London, vol. IIB, Chap. XI (1975).
- W. Schaaffs, Z. Phys., 114, 110 (1939); https://doi.org/10.1007/BF01340236
- M.R. Rao, J. Chem. Phys., 9, 682 (1941); https://doi.org/10.1063/1.1750976
- Z. Junjie, J. China Univ. Sci. Tech., 14, 298 (1984).
- A. Jouyban, M. Khoubnasabjafari, Z. Vaez-Gharamaleki, Z. Fekari and W.E.J. Acree, Chem. Pharm. Bull. (Tokyo), 53, 519 (2005); https://doi.org/10.1248/cpb.53.519
References
N. Santhi, P.L. Sabarathinam, J. Madhumitha, G. Alamelumangai and M. Emayavaramban, Int. Lett. Chem. Phys. Astron., 7, 18 (2013); https://doi.org/10.18052/www.scipress.com/ILCPA.7.18
S. Nithiyanantham, Int. Nano Lett., 9, 89 (2019); https://doi.org/10.1007/s40089-019-0269-3
R.T. Lagemann and W.S. Dunbar, J. Phys. Chem., 49, 428 (1945); https://doi.org/10.1021/j150443a003
J.A. Al-Kandary, A.S. Al-Jimaz and A.H.M. Abdul-Latif, J. Chem. Thermodyn., 38, 1351 (2006); https://doi.org/10.1016/j.jct.2006.02.001
S. Singh, B.P.S. Sethi, R.C. Katyal and V.K. Rattan, J. Chem. Eng. Data, 50, 125 (2005); https://doi.org/10.1021/je049793l
G. Moumouzias, C. Ritzoulis and G. Ritzoulis, J. Chem. Eng. Data, 44, 1187 (1999); https://doi.org/10.1021/je990094w
J.A. Al-Kandary, A.S. Al-Jimaz and A.H.M. Abdul-Latif, J. Chem. Eng. Data, 51, 2074 (2006); https://doi.org/10.1021/je060170c
M. Habibullah, K.N. Das, I.M.M. Rahman, M.A. Uddin, K. Saifuddin, K. Iwakabe and H. Hasegawa, J. Chem. Eng. Data, 55, 5370 (2010); https://doi.org/10.1021/je100823t
A. Ali and F. Nabi, Acta Phys.-Chim. Sinica, 24, 47 (2008); https://doi.org/10.1016/S1872-1508(08)60005-4
M. Indhumathi, G. Meenakshi, V.J. Priyadharshini, R. Kayalvizhi and S. Thiyagaraj, J. Chem. Pharm. Res., 4, 4245 (2012).
S.K. Bindhani, G.K. Roy, Y.K. Mohanty and T.R. Kubendran, Russ. J. Phys. Chem. A, 89, 1828 (2015); https://doi.org/10.1134/S0036024415100040
Y. Zhou, J. Wu and E.W. Lemmon, J. Phys. Chem. Ref. Data, 41, 023103 (2012); https://doi.org/10.1063/1.3703506
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, Wiley-Interscience: New York, edn 4 (1986).
A. Weissberger, E.S. Proskauer, J.A. Riddick and E.E. Toops, Organic Solvents: Physical Properties and Methods of Purification, Wiley Interscience, edn 2 (1955).
O. Nomoto, J. Phys. Soc. Jpn., 13, 1528 (1958); https://doi.org/10.1143/JPSJ.13.1528
W. van Dael and E. Vangeel, Proceeding of First International Conference on Colorimetry Thermodynamics, Warsaw, p. 555 (1969).
W. Vandeel, Experimental thermodynamics Butterworths & Co. Ltd: London, vol. IIB, Chap. XI (1975).
W. Schaaffs, Z. Phys., 114, 110 (1939); https://doi.org/10.1007/BF01340236
M.R. Rao, J. Chem. Phys., 9, 682 (1941); https://doi.org/10.1063/1.1750976
Z. Junjie, J. China Univ. Sci. Tech., 14, 298 (1984).
A. Jouyban, M. Khoubnasabjafari, Z. Vaez-Gharamaleki, Z. Fekari and W.E.J. Acree, Chem. Pharm. Bull. (Tokyo), 53, 519 (2005); https://doi.org/10.1248/cpb.53.519