Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Sulfur Doped Nanotitania for Degradation of Remazol Yellow and Phenol
Corresponding Author(s) : Posman Manurung
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
Nanocrystalline TiO2 and sulfur-doped TiO2 were synthesized using the sol-gel method. Tween-80, titanium tetraisopropoxide (TTIP), and sulfuric acid were employed as raw materials for the synthesis of TiO2. All the synthesized samples were heated for 3 h at 500 ºC. Each cell parameter of the prepared samples was explored by employing the Rietveld refinement of X-ray diffraction (XRD) patterns. For sulfur-doped TiO2 and TiO2 samples, considerable differences were observed in their cell parameters. Under ultraviolet (UV) irradiation, the phenol and remazol yellow (RY) photodegradation of the sintered samples was analyzed. Physical properties were studied using Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analyzes to measure the surface area. The XRD results confirmed that except nano-anatase, no other phase was present in any sample. The particle size range is 10-15 nm. BET surface results showed that doping concentrations influenced the surface area. On the samples with a larger surface area, photodegradation is superior, which coincides with a higher doping concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.A. Mirkin, Small, 1, 14 (2005); https://doi.org/10.1002/smll.200400092
- A.P. Nikalje, Med. Chem., 5, 081 (2015); https://doi.org/10.4172/2161-0444.1000247
- G. Wang, Nanotechnology: The New Features (2018).
- C. Lauterwasser, Opportunities and Risks of Nanotechnologies, OECD: The OECD International Futures Programme, France (2008).
- A. Khitab, S. Ahmad, M.J. Munir, S.M.S. Kazmi, T. Arshad and R.A. Khushnood, Rev. Adv. Mater. Sci., 53, 90 (2018); https://doi.org/10.1515/rams-2018-0007
- K. Nakata and A. Fujishima, J. Photochem. Photobiol. C: Photochem. Rev., 13, 169 (2012); https://doi.org/10.1016/j.jphotochemrev.2012.06.001
- M.S. Wong, D.S. Sun and H.H. Chang, PLoS One, 5, e10394 (2010); https://doi.org/10.1371/journal.pone.0010394
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1 (2000); https://doi.org/10.1016/S1389-5567(00)00002-2
- K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005); https://doi.org/10.1143/JJAP.44.8269
- J. Huberty and H. Xu, J. Solid State Chem., 181, 508 (2008); https://doi.org/10.1016/j.jssc.2007.12.015
- S. Sinha, N.G.T. Orozco, D.S.A. Ramirez and R. Rodriguez-Vazquez, J. Clean Technol., 4, 411 (2009).
- N.N. Binitha, Z. Yaakob and R. Resmi, Cent. Eur. J. Chem., 8, 182 (2010); https://doi.org/10.2478/s11532-009-0112-1
- L. Mai, C. Huang, D. Wang, Z. Zhang and Y. Wang, J. Appl. Surf. Sci., 255, 9285 (2009); https://doi.org/10.1016/j.apsusc.2009.07.027
- X. Lei, X. Xue, H. Yang, C. Chen, X. Li, M.C. Niu, X.Y. Gao and Y.T. Yang, J. Appl. Surf. Sci., 332, 172 (2015); https://doi.org/10.1016/j.apsusc.2015.01.110
- E. Fakhrutdinova, A. Shabalina and E. Sudareva, Adv. Mater. Res., 1085 95 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1085.95
- T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mutsui and M. Matsumura, J. Appl. Catal., 265, 115 (2004); https://doi.org/10.1016/j.apcata.2004.01.007
- Y. Wang, J. Li, P. Peng, T. Lu and L. Wang, Appl. Surf. Sci., 254, 5276 (2008); https://doi.org/10.1016/j.apsusc.2008.02.050
- H.E. Swanson and E. Tatge, Standard X-Ray Diffraction Powder Patterns, U.S. Natl. Bur. Stds. Circular 539, vol. 1 , pp. 74-76 (1953).
- S.M. Abdel-Azim, A.K. Aboul-Gheit, S.M. Ahmed, D.S. El-Desouki and M.S.A. Abdel-Mottaleb, Int. J. Photoenergy, 20, 687597 (2014); https://doi.org/10.1155/2014/687597
- W. Ziemkowska, D. Basiak, P. Kurtycz, A. Jastrzebska, A. Olszyna and A. Kunicki, Chem. Pap., 68, 1 (2014); https://doi.org/10.2478/s11696-014-0537-7
- P. Manurung, R. Situmeang, E. Ginting and I. Pardede, Indones. J. Chem., 15, 36 (2015); https://doi.org/10.22146/ijc.21221
- I. Djerdj and A. Tonejc, J. Alloys Compd., 413, 159 (2006); https://doi.org/10.1016/j.jallcom.2005.02.105
- B.A. Hunter, Rietica for 95/98/NT Version 1.71, ANSTO, Sydney (1997).
- A. Janotti, B. Jalan, S. Stemmer and C.G. Van de Walle, Appl. Phys.Lett., 100, 262104 (2012); https://doi.org/10.1063/1.4730998
- N. Manjula, M. Pugalenthi, V.S. Nagarethinam, K. Usharani and A.R. Balu, Mater. Sci. Pol., 33, 774 (2015); https://doi.org/10.1515/msp-2015-0115
- N. Paul and D. Mohanta, J. Mater. Res., 28, 1471 (2013); https://doi.org/10.1557/jmr.2013.122
- E. Huseynov, A. Garibov and R. Mehdiyeva, J. Mater. Res. Technol, 5, 213 (2016); https://doi.org/10.1016/j.jmrt.2015.11.001
- D. Chatterjee, V.P. Patnam, A. Sikdar, P. Joshi, R. Misra and N.N. Rao, J. Hazard. Mater., 156, 435 (2008); https://doi.org/10.1016/j.jhazmat.2007.12.038
- W.I. Kim, D.J. Suh, T.J. Park and I.K. Hong, Top. Catal., 44, 499 (2007); https://doi.org/10.1007/s11244-006-0097-3
- Z. Guo, R. Ma and G. Li, Chem. Eng. J., 119, 55 (2006); https://doi.org/10.1016/j.cej.2006.01.017
- A. Sobczynski, L. Duczmal and W. Zmudzinski, J. Mol. Catal. Chem., 213, 225 (2004); https://doi.org/10.1016/j.molcata.2003.12.006
- E. Grabowska, J. Reszczynska and A. Zaleska, Water Res., 46, 5453 (2012); https://doi.org/10.1016/j.watres.2012.07.048
References
C.A. Mirkin, Small, 1, 14 (2005); https://doi.org/10.1002/smll.200400092
A.P. Nikalje, Med. Chem., 5, 081 (2015); https://doi.org/10.4172/2161-0444.1000247
G. Wang, Nanotechnology: The New Features (2018).
C. Lauterwasser, Opportunities and Risks of Nanotechnologies, OECD: The OECD International Futures Programme, France (2008).
A. Khitab, S. Ahmad, M.J. Munir, S.M.S. Kazmi, T. Arshad and R.A. Khushnood, Rev. Adv. Mater. Sci., 53, 90 (2018); https://doi.org/10.1515/rams-2018-0007
K. Nakata and A. Fujishima, J. Photochem. Photobiol. C: Photochem. Rev., 13, 169 (2012); https://doi.org/10.1016/j.jphotochemrev.2012.06.001
M.S. Wong, D.S. Sun and H.H. Chang, PLoS One, 5, e10394 (2010); https://doi.org/10.1371/journal.pone.0010394
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1 (2000); https://doi.org/10.1016/S1389-5567(00)00002-2
K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005); https://doi.org/10.1143/JJAP.44.8269
J. Huberty and H. Xu, J. Solid State Chem., 181, 508 (2008); https://doi.org/10.1016/j.jssc.2007.12.015
S. Sinha, N.G.T. Orozco, D.S.A. Ramirez and R. Rodriguez-Vazquez, J. Clean Technol., 4, 411 (2009).
N.N. Binitha, Z. Yaakob and R. Resmi, Cent. Eur. J. Chem., 8, 182 (2010); https://doi.org/10.2478/s11532-009-0112-1
L. Mai, C. Huang, D. Wang, Z. Zhang and Y. Wang, J. Appl. Surf. Sci., 255, 9285 (2009); https://doi.org/10.1016/j.apsusc.2009.07.027
X. Lei, X. Xue, H. Yang, C. Chen, X. Li, M.C. Niu, X.Y. Gao and Y.T. Yang, J. Appl. Surf. Sci., 332, 172 (2015); https://doi.org/10.1016/j.apsusc.2015.01.110
E. Fakhrutdinova, A. Shabalina and E. Sudareva, Adv. Mater. Res., 1085 95 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1085.95
T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mutsui and M. Matsumura, J. Appl. Catal., 265, 115 (2004); https://doi.org/10.1016/j.apcata.2004.01.007
Y. Wang, J. Li, P. Peng, T. Lu and L. Wang, Appl. Surf. Sci., 254, 5276 (2008); https://doi.org/10.1016/j.apsusc.2008.02.050
H.E. Swanson and E. Tatge, Standard X-Ray Diffraction Powder Patterns, U.S. Natl. Bur. Stds. Circular 539, vol. 1 , pp. 74-76 (1953).
S.M. Abdel-Azim, A.K. Aboul-Gheit, S.M. Ahmed, D.S. El-Desouki and M.S.A. Abdel-Mottaleb, Int. J. Photoenergy, 20, 687597 (2014); https://doi.org/10.1155/2014/687597
W. Ziemkowska, D. Basiak, P. Kurtycz, A. Jastrzebska, A. Olszyna and A. Kunicki, Chem. Pap., 68, 1 (2014); https://doi.org/10.2478/s11696-014-0537-7
P. Manurung, R. Situmeang, E. Ginting and I. Pardede, Indones. J. Chem., 15, 36 (2015); https://doi.org/10.22146/ijc.21221
I. Djerdj and A. Tonejc, J. Alloys Compd., 413, 159 (2006); https://doi.org/10.1016/j.jallcom.2005.02.105
B.A. Hunter, Rietica for 95/98/NT Version 1.71, ANSTO, Sydney (1997).
A. Janotti, B. Jalan, S. Stemmer and C.G. Van de Walle, Appl. Phys.Lett., 100, 262104 (2012); https://doi.org/10.1063/1.4730998
N. Manjula, M. Pugalenthi, V.S. Nagarethinam, K. Usharani and A.R. Balu, Mater. Sci. Pol., 33, 774 (2015); https://doi.org/10.1515/msp-2015-0115
N. Paul and D. Mohanta, J. Mater. Res., 28, 1471 (2013); https://doi.org/10.1557/jmr.2013.122
E. Huseynov, A. Garibov and R. Mehdiyeva, J. Mater. Res. Technol, 5, 213 (2016); https://doi.org/10.1016/j.jmrt.2015.11.001
D. Chatterjee, V.P. Patnam, A. Sikdar, P. Joshi, R. Misra and N.N. Rao, J. Hazard. Mater., 156, 435 (2008); https://doi.org/10.1016/j.jhazmat.2007.12.038
W.I. Kim, D.J. Suh, T.J. Park and I.K. Hong, Top. Catal., 44, 499 (2007); https://doi.org/10.1007/s11244-006-0097-3
Z. Guo, R. Ma and G. Li, Chem. Eng. J., 119, 55 (2006); https://doi.org/10.1016/j.cej.2006.01.017
A. Sobczynski, L. Duczmal and W. Zmudzinski, J. Mol. Catal. Chem., 213, 225 (2004); https://doi.org/10.1016/j.molcata.2003.12.006
E. Grabowska, J. Reszczynska and A. Zaleska, Water Res., 46, 5453 (2012); https://doi.org/10.1016/j.watres.2012.07.048