Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Nickel Concentration in Natural Zeolite as Catalyst in Hydrocracking Process of Used Cooking Oil
Corresponding Author(s) : K. Wijaya
Asian Journal of Chemistry,
Vol. 32 No. 11 (2020): Vol 32 Issue 11
Abstract
Nickel impregnated zeolites were successfully synthesized through wet impregnation using activated natural zeolites (ANZs) and the nickel nitrate hexahydrate (Ni(NO3)2·6H2O) precursor at different concentrations of 1%, 2% and 3% (w/w) (hereafter referred to as ANZ/Ni 1%, ANZ/Ni 2%, and ANZ/Ni 3%). The synthesized products were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), surface area analyzer (SAA), scanning electron microscopy (SEM), total acidity measurements by employing ammonia adsorption and Brunauer-Emmett-Teller (BET) theory. The obtained catalysts were employed in the hydrocracking of waste cooking oils, and the formed products were analyzed through gas chromatography-mass spectrometry (GC-MS). The FTIR results indicated that impregnated of ANZs with Ni can increase zeolite acidity. The test results of total acidity revealed that 3% ANZ/Ni catalyst exhibited the maximum total acidity of 3.70 mmol/g. XRD diffractogram confirmed the successful impregnation of Ni into ANZs, which was indicated by the characteristic diffraction peaks appearing at 2θ of 9.75º, 13.41º, 19.56º, 22.25º, 25.61º, 27.66º and 31.91º. SEM analysis indicated that the particle size of zeolite catalysts was non-uniform, but these catalysts exhibited a highly uniform surface after they were activated. Moreover, the ANZ catalysts impregnated with different concentrations of Ni exhibited a highly uniform particle size. The ANZ/Ni 3% catalyst has small uniform particles. The BET results revealed that the ANZ/Ni 2% catalyst exhibited the maximum pore volume and surface area and relatively smaller radii of pores. GC-MS was employed to determine liquid products, and its results showed that the ANZ/Ni 3% catalyst had the maximum amount of liquid products of 18%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Huang, X. Liu, L. Yu, S. Miao, Z. Liu, S. Zhang, S. Xie and L. Xu, Micropor. Mesopor. Mater., 191, 18 (2014); https://doi.org/10.1016/j.micromeso.2014.02.039
- W. Sriningsih, M.G. Saerodji, W. Trisunaryanti, Triyono, R. Armunanto and I.I. Falah, Procedia Environ. Sci., 20, 215 (2014); https://doi.org/10.1016/j.proenv.2014.03.028
- B. Purwono, C. Anwar and A. Hanapi, Indones. J. Chem., 13, 1 (2013); https://doi.org/10.22146/ijc.21318
- A. Suseno, K. Wijaya, W. Trisunaryanti and R. Roto, Orient. J. Chem., 34, 1427 (2018); https://doi.org/10.13005/ojc/340332
- A. Tangy, I.N. Pulidindi and A. Gedanken, Energy Fuel, 30, 3151 (2016); https://doi.org/10.1021/acs.energyfuels.6b00256
- N. Taufiqurrahmi, A.R. Mohamed and S. Bhatia, Bioresour. Technol., 102, 10686 (2011); https://doi.org/10.1016/j.biortech.2011.08.068
- B. Liu, X. Cheng, J. Liu and H. Pu, Fuel, 223, 1 (2018); https://doi.org/10.1016/j.fuel.2018.02.196
- A. Ahmadi, D.D. Ganji and F. Jafarkazemi, Energy Convers. Manage., 119, 1 (2016); https://doi.org/10.1016/j.enconman.2016.07.061
- K. Wijaya, D.A. Ani, T. Iqmal, S. Akhmad, A. Rachmat and Hasanudin, Nano Hybrids Compos., 19, 46 (2017); https://doi.org/10.4028/www.scientific.net/NHC.19.46
- C. Ma, J. Geng, D. Zhang and X. Ning, J. Energy Inst., 93, 581 (2020); https://doi.org/10.1016/j.joei.2019.06.007
- J. Cheng, Z. Zhang, X. Zhang, J. Liu, J. Zhou and K. Cen, Int. J. Hydrogen Energy, 44, 1650 (2019); https://doi.org/10.1016/j.ijhydene.2018.11.110
- M. Ebrahiminejad and R. Karimzadeh, Adv. Powder Technol., 30, 1450 (2019); https://doi.org/10.1016/j.apt.2019.04.021
- C. Manrique, A. Guzmán, J. Pérez-Pariente, C. Márquez-Álvarez and A. Echavarría, Micropor. Mesopor. Mater., 234, 347 (2016); https://doi.org/10.1016/j.micromeso.2016.07.017
- G. Cui, J. Wang, H. Fan, X. Sun, Y. Jiang, S. Wang, D. Liu and J. Gui,Fuel Process. Technol., 92, 2320 (2011); https://doi.org/10.1016/j.fuproc.2011.07.020
- M.O. Kazakov, K.A. Nadeina, I.G. Danilova, P.P. Dik, O.V. Klimov, V.Y. Pereyma, E.Y. Gerasimov, I.V. Dobryakova, E.E. Knyazeva, I.I. Ivanova and A.S. Noskov, Catal. Today, 305, 117 (2018); https://doi.org/10.1016/j.cattod.2017.08.048
- P.P. Dik, G.G. Danilova, M.O. Kazakov, K.A. Nadiena, V. Budukva, P. Yu, O.V. Klimov, P.P. Prosvirin, E.Y. Gerasimov, T.O. Bok, E.E. Dobryakova, E.E. Knyazeva, I.I. Ivanova and A.S. Noskov, Fuel, 237, 178 (2019); https://doi.org/10.1016/j.fuel.2018.10.012
- Q. Cui, S. Wang, Q. Wang, L. Mu, G. Yu, T. Zhang and Y. Zhou, Fuel, 237, 597 (2019); https://doi.org/10.1016/j.fuel.2018.10.040
References
S. Huang, X. Liu, L. Yu, S. Miao, Z. Liu, S. Zhang, S. Xie and L. Xu, Micropor. Mesopor. Mater., 191, 18 (2014); https://doi.org/10.1016/j.micromeso.2014.02.039
W. Sriningsih, M.G. Saerodji, W. Trisunaryanti, Triyono, R. Armunanto and I.I. Falah, Procedia Environ. Sci., 20, 215 (2014); https://doi.org/10.1016/j.proenv.2014.03.028
B. Purwono, C. Anwar and A. Hanapi, Indones. J. Chem., 13, 1 (2013); https://doi.org/10.22146/ijc.21318
A. Suseno, K. Wijaya, W. Trisunaryanti and R. Roto, Orient. J. Chem., 34, 1427 (2018); https://doi.org/10.13005/ojc/340332
A. Tangy, I.N. Pulidindi and A. Gedanken, Energy Fuel, 30, 3151 (2016); https://doi.org/10.1021/acs.energyfuels.6b00256
N. Taufiqurrahmi, A.R. Mohamed and S. Bhatia, Bioresour. Technol., 102, 10686 (2011); https://doi.org/10.1016/j.biortech.2011.08.068
B. Liu, X. Cheng, J. Liu and H. Pu, Fuel, 223, 1 (2018); https://doi.org/10.1016/j.fuel.2018.02.196
A. Ahmadi, D.D. Ganji and F. Jafarkazemi, Energy Convers. Manage., 119, 1 (2016); https://doi.org/10.1016/j.enconman.2016.07.061
K. Wijaya, D.A. Ani, T. Iqmal, S. Akhmad, A. Rachmat and Hasanudin, Nano Hybrids Compos., 19, 46 (2017); https://doi.org/10.4028/www.scientific.net/NHC.19.46
C. Ma, J. Geng, D. Zhang and X. Ning, J. Energy Inst., 93, 581 (2020); https://doi.org/10.1016/j.joei.2019.06.007
J. Cheng, Z. Zhang, X. Zhang, J. Liu, J. Zhou and K. Cen, Int. J. Hydrogen Energy, 44, 1650 (2019); https://doi.org/10.1016/j.ijhydene.2018.11.110
M. Ebrahiminejad and R. Karimzadeh, Adv. Powder Technol., 30, 1450 (2019); https://doi.org/10.1016/j.apt.2019.04.021
C. Manrique, A. Guzmán, J. Pérez-Pariente, C. Márquez-Álvarez and A. Echavarría, Micropor. Mesopor. Mater., 234, 347 (2016); https://doi.org/10.1016/j.micromeso.2016.07.017
G. Cui, J. Wang, H. Fan, X. Sun, Y. Jiang, S. Wang, D. Liu and J. Gui,Fuel Process. Technol., 92, 2320 (2011); https://doi.org/10.1016/j.fuproc.2011.07.020
M.O. Kazakov, K.A. Nadeina, I.G. Danilova, P.P. Dik, O.V. Klimov, V.Y. Pereyma, E.Y. Gerasimov, I.V. Dobryakova, E.E. Knyazeva, I.I. Ivanova and A.S. Noskov, Catal. Today, 305, 117 (2018); https://doi.org/10.1016/j.cattod.2017.08.048
P.P. Dik, G.G. Danilova, M.O. Kazakov, K.A. Nadiena, V. Budukva, P. Yu, O.V. Klimov, P.P. Prosvirin, E.Y. Gerasimov, T.O. Bok, E.E. Dobryakova, E.E. Knyazeva, I.I. Ivanova and A.S. Noskov, Fuel, 237, 178 (2019); https://doi.org/10.1016/j.fuel.2018.10.012
Q. Cui, S. Wang, Q. Wang, L. Mu, G. Yu, T. Zhang and Y. Zhou, Fuel, 237, 597 (2019); https://doi.org/10.1016/j.fuel.2018.10.040