Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation of Protein Microencapsulation Efficiency in Alginate/Hydroxyethyl Cellulose Polymer Composite
Corresponding Author(s) : Rodel D. Guerrero
Asian Journal of Chemistry,
Vol. 32 No. 11 (2020): Vol 32 Issue 11
Abstract
Considering how much protein is loaded into the process, the crosslinking solution concentration and the weight percentage of the alginate/hydroxyethyl cellulose coating material, this study presented the details of optimization of the microencapsulation process. Optimization was done with an objective of maximizing the encapsulation efficiency of the microparticle fabricated using external ionotropic gelation method. Results showed that the process is capable of achieving around 75% encapsulation efficiency when protein loading is around 15 wt%, alginate/hydroxyethyl cellulos is about 2 wt% and the CaCl2 solution should be 3 wt%. This was done using Box-Behnken methodology wherein the predicted model was found to have good predictive capability. Analysis also showed that the process is affected by how much protein drug is loaded into the system and the interactions between crosslinking solution concentration with bovine serum albumin (BSA) loading as well as the strong relationship between alginate/hydroxyethyl cellulos concentration with itself.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. George and T. Abraham, J. Control. Release, 114, 1 (2006); https://doi.org/10.1016/j.jconrel.2006.04.017
- P. Gacesa, Carbohydr. Polym., 8, 161 (1988); https://doi.org/10.1016/0144-8617(88)90001-X
- G. Coppi, V. Iannuccelli, E. Leo, M. Bernabei and R. Cameroni, J. Microencapsul., 19, 37 (2002); https://doi.org/10.1080/02652040110055621
- G. Giandalia, V. De Caro, L. Cordone and L.I. Giannola, Eur. J. Pharm. Biopharm., 52, 83 (2001); https://doi.org/10.1016/S0939-6411(01)00145-X
- I. Selim, A. Basta, O. Mansour and A. Atwa, Polym. Plast. Technol. Eng., 33, 161 (1994); https://doi.org/10.1080/03602559408015293
- C. Pescos, M.Sc. Thesis, Synthesis and Characterization of AlginateHydroxyethyl Cellulose Microspheres as Drug Delivery System for Naproxen Sodium, University of the Philippines, Diliman, Philippines (2016).
- M. Cetin, I. Vural, Y. Capan and A. Hincal, FABAD J. Pharm. Sci., 32, 103 (2007).
- C. Silva, A. Ribeiro, D. Ferreira and F. Veiga, Eur. J. Pharm. Sci., 29, 148 (2006); https://doi.org/10.1016/j.ejps.2006.06.008
- O. Smidsrod and G. Skjakbrk, Trends Biotechnol., 8, 71 (1990); https://doi.org/10.1016/0167-7799(90)90139-O
- T. Ostberg, L. Vesterhus and C. Graffner, Int. J. Pharm., 97, 183 (1993); https://doi.org/10.1016/0378-5173(93)90138-6
- L. Zhang, J. Guo, X. Peng and Y. Jin, J. Appl. Polym. Sci., 92, 878 (2004); https://doi.org/10.1002/app.13708
- J. Zhang, X. Li, D. Zhang and Z. Xiu, J. Appl. Polym. Sci., 110, 4 (2008); https://doi.org/10.1002/app.28753
- Z. Zhang, R. Zhang, L. Zou and D.J. McClements, Food Hydrocoll., 58, 308 (2016); https://doi.org/10.1016/j.foodhyd.2016.03.015
- R. Guerrero, P.h.D. Thesis, Development of Hydrogel Microparticles Based on Sodium Alginate and Cellulose Derivatives for Controlled Delivery of Proteins. University of the Philippines, Diliman, Philippines (2018).
- J. Harington, Ind. Qual. Control, 21, 494 (1965).
- L. del Valle, A. Diaz and J. Puiggali, Gels, 3, 27 (2017); https://doi.org/10.3390/gels3030027
- R. Myers and D. Montgomery, Response sUrface Methodology Process and Product Optimization Using Designed Experiments, John Wiley & Sons: Canada, pp. 203-303 (2002).
- P. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill: New York (1996)
References
M. George and T. Abraham, J. Control. Release, 114, 1 (2006); https://doi.org/10.1016/j.jconrel.2006.04.017
P. Gacesa, Carbohydr. Polym., 8, 161 (1988); https://doi.org/10.1016/0144-8617(88)90001-X
G. Coppi, V. Iannuccelli, E. Leo, M. Bernabei and R. Cameroni, J. Microencapsul., 19, 37 (2002); https://doi.org/10.1080/02652040110055621
G. Giandalia, V. De Caro, L. Cordone and L.I. Giannola, Eur. J. Pharm. Biopharm., 52, 83 (2001); https://doi.org/10.1016/S0939-6411(01)00145-X
I. Selim, A. Basta, O. Mansour and A. Atwa, Polym. Plast. Technol. Eng., 33, 161 (1994); https://doi.org/10.1080/03602559408015293
C. Pescos, M.Sc. Thesis, Synthesis and Characterization of AlginateHydroxyethyl Cellulose Microspheres as Drug Delivery System for Naproxen Sodium, University of the Philippines, Diliman, Philippines (2016).
M. Cetin, I. Vural, Y. Capan and A. Hincal, FABAD J. Pharm. Sci., 32, 103 (2007).
C. Silva, A. Ribeiro, D. Ferreira and F. Veiga, Eur. J. Pharm. Sci., 29, 148 (2006); https://doi.org/10.1016/j.ejps.2006.06.008
O. Smidsrod and G. Skjakbrk, Trends Biotechnol., 8, 71 (1990); https://doi.org/10.1016/0167-7799(90)90139-O
T. Ostberg, L. Vesterhus and C. Graffner, Int. J. Pharm., 97, 183 (1993); https://doi.org/10.1016/0378-5173(93)90138-6
L. Zhang, J. Guo, X. Peng and Y. Jin, J. Appl. Polym. Sci., 92, 878 (2004); https://doi.org/10.1002/app.13708
J. Zhang, X. Li, D. Zhang and Z. Xiu, J. Appl. Polym. Sci., 110, 4 (2008); https://doi.org/10.1002/app.28753
Z. Zhang, R. Zhang, L. Zou and D.J. McClements, Food Hydrocoll., 58, 308 (2016); https://doi.org/10.1016/j.foodhyd.2016.03.015
R. Guerrero, P.h.D. Thesis, Development of Hydrogel Microparticles Based on Sodium Alginate and Cellulose Derivatives for Controlled Delivery of Proteins. University of the Philippines, Diliman, Philippines (2018).
J. Harington, Ind. Qual. Control, 21, 494 (1965).
L. del Valle, A. Diaz and J. Puiggali, Gels, 3, 27 (2017); https://doi.org/10.3390/gels3030027
R. Myers and D. Montgomery, Response sUrface Methodology Process and Product Optimization Using Designed Experiments, John Wiley & Sons: Canada, pp. 203-303 (2002).
P. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill: New York (1996)