Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Computational Design, Spectral, NBO, DOS, Bioactivity Evaluation, ADMET Analysis, Third-Order non-linear Optical and Quantum Chemical Investigations on Hydrogen Bonded Novel Organic Molecular Complex of 4-[Bis[2-(acetyloxy)ethyl]amino]benzaldehyde (4B2AEA
Corresponding Author(s) : Anil Mishra
Asian Journal of Chemistry,
Vol. 32 No. 11 (2020): Vol 32 Issue 11
Abstract
In this paper, the authors reported a theoretical investigation on molecular structure, geometry optimization, global and local chemical reactivity descriptors calculations, NBO study, DOS, non-linear optical behaviour and vibrational wavenumbers of the novel 4-[bis[2-(acetyloxy)ethyl]amino]benzaldehyde (4B2AEAB) were carried out by DFT (B3LYP and B3PW91) methods with 6-31+G (d, p) basis set in water solvent. The calculated vibrational wavenumbers are found to be in good agreement with experimental FT-IR spectra and PED analysis using GaussView 5.0 and VEDA 4 program. The UV-Vis absorption spectrum of 4B2AEAB was calculated by using TD-DFT/B3LYP/6-31+G(d,p) in gas phase, water, CHCl3, DMSO and CH2Cl2 solvents using CPCM model and λmax in range of 354.16, 341.35, 343.74, 342.18 and 342.64 nm, respectively. The density of state (DOS spectrum) of the compound in term of HOMOs and LUMOs and MESP were calculated and analyzed. The temperature effects on the thermodynamic properties are also discussed. The calculated 1H NMR and 13C NMR chemical shift using GIAO method and solvent effect are investigated by B3LYP/6-31+G(d,p) in gas phase, chloroform, water, DMSO and CH2Cl2 solvents and correlate with experimental chemical shifts. The dipole moment, polarizability and the first static hyperpolarizability values show that the 4B2AEAB molecule is active non-linear optical (NLO) material. The nucleophilic and electrophilic reactive sites in the 4B2AEAB and its derivatives were analyzed by Fukui function analysis using Mulliken charge. The charge transfer, conjugative interactions and delocalization of electron density are analyzed by natural bond orbital (NBO) analysis. The biological properties and ADMET study of 4B2AEAB and its derivatives are also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Vijayakumar, G.A. Babu and P. Ramasamy, Mater. Res. Bull., 47, 957 (2012); https://doi.org/10.1016/j.materresbull.2012.01.011
- M. Samoc, A. Samoc, B. Luther-Davies, M.G. Humphrey and M.-S. Wong, Opt. Mater., 21, 485 (2003); https://doi.org/10.1016/S0925-3467(02)00187-8
- A.M. Petrosyan, J. Cryst. Phys. Chem., 1, 33 (2010).
- Y. Gao, Q. Chang, H. Ye, W. Jiao, Y. Song, Y. Wang and J. Qin, Appl.Phys. B, 88, 255 (2007); https://doi.org/10.1007/s00340-007-2687-6
- A.J. Kiran, D. Udayakumar, K. Chandrasekharan, A.V. Adhikari and H.D. Shashikala, J. Phys. At. Mol. Opt. Phys., 39, 3747 (2006); https://doi.org/10.1088/0953-4075/39/18/005
- A. Ronchi, T. Cassano, R. Tommasi, F. Babudri, A. Cardone, G.M. Farinola and F. Naso, Synth. Met., 139, 831 (2003); https://doi.org/10.1016/S0379-6779(03)00274-1
- C. Li, L. Zhang, M. Yang, H. Wang and Y. Wang, Phys. Rev. A, 49, 1149 (1994); https://doi.org/10.1103/PhysRevA.49.1149
- W. Sun, M.M. McKerns, C.M. Lawson, G.M. Gray, C. Zhan and D. Wang, Proc. SPIE Int. Soc. Opt. Eng., 4106, 280 (2000); https://doi.org/10.1117/12.408515
- M. Kitazawa, R. Higuchi, M. Takahashi, T. Wada and H. Sasabe, Appl. Phys. Lett., 64, 2477 (1994); https://doi.org/10.1063/1.111602
- W.S. Wang, M.D. Aggarwal, J. Choi, T. Gebre, A.D. Shields, B.G. Penn and D.O. Frazier, J. Cryst. Growth, 198-199, 578 (1999); https://doi.org/10.1016/S0022-0248(98)01041-0
- M. Jazbinsek, L. Mutter and P. Gunter, IEEE J. Sel. Top. Quantum Electron., 14, 1298 (2008); https://doi.org/10.1109/JSTQE.2008.921407
- J.M. Rivera, H. Reyes, A. Cortes, R. Santillan, P.G. Lacroix, C. Lepetit, K. Nakatani and N. Farfán, Chem. Mater., 18, 1174 (2006); https://doi.org/10.1021/cm051589+
- B.B. Ivanova and M. Spiteller, J. Phys. Chem. A, 114, 5099 (2010); https://doi.org/10.1021/jp1002758
- A.P. Menezes, A. Jayarama and S.W. Ng, J. Cryst. Growth, 402, 130 (2014); https://doi.org/10.1016/j.jcrysgro.2014.04.026
- P. Salek, O. Vahtras, T. Helgaker and H. Ågren, J. Chem. Phys., 117, 9630 (2002); https://doi.org/10.1063/1.1516805
- L.M. Haupert and G.J. Simpson, Ann. Rev. Phys. Chem., 60, 345 (2009); https://doi.org/10.1146/annurev.physchem.59.032607.093712
- R. Zalesny, I.W. Bulik, W. Bartkowiak, J.M. Luis, A. Avramopoulos, M.G. Papadopoulos and P. Krawczyk, J. Chem. Phys., 133, 244308 (2010); https://doi.org/10.1063/1.3516209
- N. Islam and A.H. Pandith, J. Mol. Model., 20, 2535 (2014); https://doi.org/10.1007/s00894-014-2535-7
- S. van Elshocht, T. Verbiest, M. Kauranen, B.M.W. Langeveld-Voss, A. Persoons and E.W. Meijer, J. Chem. Phys., 107, 8201 (1997); https://doi.org/10.1063/1.475223
- A. Wojciechowski, M.M.M. Raposo, M.C.R. Castro, W. Kuznik, I. Fuks-Janczarek, M. Pokladko-Kowar and F. Bures, J. Mater. Sci. Mater. Electron., 25, 1745 (2014); https://doi.org/10.1007/s10854-014-1793-6
- T. Chen, Z. Sun, L. Li, S. Wang, Y. Wang, J. Luo and M. Hong, J. Cryst. Growth, 338, 157 (2012); https://doi.org/10.1016/j.jcrysgro.2011.10.023
- P. Srinivasan, T. Kanagasekaran, N. Vijayan, G. Bhagavannarayana, R. Gopalakrishnan and P. Ramasamy, Opt. Mater., 30, 553 (2007); https://doi.org/10.1016/j.optmat.2007.01.014
- L.N. Wang, X.Q. Wang, G.H. Zhang, X.T. Liu, Z.H. Sun, G.H. Sun, L. Wang, W.T. Yu and D. Xu, J. Cryst. Growth, 327, 133 (2011); https://doi.org/10.1016/j.jcrysgro.2011.05.010
- M. Prakash, M. Lydia Caroline and D. Geetha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 108, 32 (2013); https://doi.org/10.1016/j.saa.2013.01.078
- H. Koshima, H. Miyamoto, I. Yagi and K. Uosaki, Crystal Growth Des., 4, 807 (2004); https://doi.org/10.1021/cg034187s
- V. Kannan, K. Thirupugalmani and S. Brahadeeswaran, J. Mol. Struct., 1049, 268 (2013); https://doi.org/10.1016/j.molstruc.2013.06.055
- G. Shanmugam, K. Ravi Kumar, B. Sridhar and S. Brahadeeswaran, Mater. Res. Bull., 47, 2315 (2012); https://doi.org/10.1016/j.materresbull.2012.05.037
- P. Asokan and S. Kalainathan, J. Phys. Chem. C, 121, 22384 (2017); https://doi.org/10.1021/acs.jpcc.7b07805
- N. Karuppanan and S. Kalainathan, J. Phys. Chem. C, 122, 4572 (2018); https://doi.org/10.1021/acs.jpcc.7b11884
- S. Kulshrestha and A.K. Shrivastava, Phys. Scr., 94, 025503 (2019); https://doi.org/10.1088/1402-4896/aafbf8
- S. Sathiya, M. Senthilkumar and C.R. Raja, J. Mol. Struct., 1180, 81 (2019); https://doi.org/10.1016/j.molstruc.2018.11.067
- S. Karthick, K. Thirupugalmani, V. Kannan, G. Shanmugam, M.K. Kumar, G. Vinitha, B. Sridhar and S. Brahadeeswaran, J. Mol. Struct., 1178, 352 (2019); https://doi.org/10.1016/j.molstruc.2018.10.048
- P. Pandey and R.N. Rai, J. Mol. Struct., 1160, 189 (2018); https://doi.org/10.1016/j.molstruc.2018.02.002
- A. Naeem, I.M. Khan and A. Ahmad, Russ. J. Phys. Chem. A, 85, 1840 (2011); https://doi.org/10.1134/S0036024411100128
- I.M. Pavlovetc, S. Draguta, M.I. Fokina, T.V. Timofeeva and I.Y. Denisyuk, Opt. Commun., 362, 64 (2016); https://doi.org/10.1016/j.optcom.2015.05.034
- R.W.G. Wyckoff and R.B. Corey, Z. Kristallogr., 81, 386 (1932); https://doi.org/10.1524/zkri.1932.81.1.386
- http://www.sigmaaldrich.com/united-states.html
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2016).
- E. Frich, H. P. Hratchian, R. D. Dennington II, T. A. Keith, John Millam, B. Nielsen, A. J. Holder and J. Hiscocks, Gaussian Inc.: GaussView Version 5.0.8 (2009).
- M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, Poland (2004).
- J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 111, 11683 (2007); https://doi.org/10.1021/jp073974n
- M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); https://doi.org/10.1063/1.447079
- R. Ditchfield, Mol. Phys., 27, 789 (1974); https://doi.org/10.1080/00268977400100711
- J. Pratt, J. Hutchinson and C.L. Klein Stevens, Acta Cryst., 67C, o487 (2011); https://doi.org/10.1107/S0108270111041825
- R.M. Silverstein, G.C. Basseler and C. Morill, Spectroscopic Identification of Organic Compounds, Wiley: New York, edn 4 (1981).
- G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press: New York (1969).
- N. Sundaraganesan, S. Ilakiamani, P. Subramani and B.D. Joshua, Spectrochim. Acta A Mol. Biomol. Spectrosc., 67, 628 (2007); https://doi.org/10.1016/j.saa.2006.08.020
- V. Krishnakumar and R. Ramasamy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 2526 (2005); https://doi.org/10.1016/j.saa.2004.08.027
- N. Puviarasan, V. Arjunan and S. Mohan, Turk. J. Chem., 26, 323 (2002).
- N.B. Colthup, L.H. Daly and S.E. Wilberly, Introduction to Infrared and Raman Spectroscopy, 3rd Edn., Academic Press, Inc. USA (1990).
- K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo and F. Hamada, Mater. Chem. Phys., 188, 131 (2017); https://doi.org/10.1016/j.matchemphys.2016.12.008
- K. Thirupugalmani, S. Karthick, G. Shanmugam, V. Kannan, B. Sridhar, K. Nehru and S. Brahadeeswaran, Opt. Mater., 49, 158 (2015); https://doi.org/10.1016/j.optmat.2015.09.014
- Y. Erdogdu, O. Unsalan and M.T. Gulluoglu, J. Raman Spectrosc., 41, 820 (2010); https://doi.org/10.1002/jrs.2520
- E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486
- P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039
- R.G. Parr and W.J. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036
- W. Yang and W.J.J. Mortier, Am. Chem. Soc., 108, 5708 (1986); https://doi.org/10.1021/ja00279a008
- R.K. Roy, S. Krishnamurti, P. Geerlings and S. Pal, J. Phys. Chem. A, 102, 3746 (1998); https://doi.org/10.1021/jp973450v
- P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u
- V.G. Dimitriev, G.G. Gurzadyan and D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer: Berlin (1991).
- M. Arivazhagan, V.P. Subhasini and R. Kavitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 527 (2014); https://doi.org/10.1016/j.saa.2014.02.093
- D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977
- M. Arivazhagan and R. Meenakshi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 82, 316 (2011); https://doi.org/10.1016/j.saa.2011.07.055
- S. Panchapakesan, K. Subramani and B. Srinivasan, J. Mater. Sci. Mater. Electron., 28, 5754 (2017); https://doi.org/10.1007/s10854-016-6247-x
- N. Sudharsana, V. Krishnakumar and R. Nagalakshmi, J. Cryst. Growth, 398, 45 (2014); https://doi.org/10.1016/j.jcrysgro.2014.03.051
- S. Karthick, K. Thirupugalmani, G. Shanmugam, V. Kannan and S. Brahadeeswaran, J. Mol. Struct., 1156, 264 (2018); https://doi.org/10.1016/j.molstruc.2017.11.115
- T. Chen, Z. Sun, C. Song, Y. Ge, J. Luo, W. Lin and M. Hong, Cryst. Growth Des., 12, 2673 (2012); https://doi.org/10.1021/cg300262t
- V. Kannan S. Karthick and S. Brahadeeswaran, Z. Phys. Chem., 233, 1293 (2019); https://doi.org/10.1515/zpch-2018-1231
- G. Shanmugam, K. Thirupugalmani, V. Kannan and S. Brahadeeswaran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 175 (2013); https://doi.org/10.1016/j.saa.2013.01.006
- G. Shanmugam, M.S. Belsley, D. Isakov, E. de Matos Gomes, K. Nehru and S. Brahadeeswaran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 284 (2013); https://doi.org/10.1016/j.saa.2013.05.070
- S. Gunsekaran and R.A. Balaji, Can. J. Anal. Sci. Spectrosc., 53, 149 (2008); https://doi.org/10.1515/znc-1999-3-405
- A. Kumar, A. Pandey and A. Mishra, J. Biol. Chem. Res., 36 (Part-A), 1 (2019).
- A. Kumar, A. Pandey and A. Mishra, J. Biol. Chem. Res., 36 (Part-B), 1 (2019)
- A. Pandey, A. Kumar and A. Mishra J. Biol. Chem. Res., 36, 102 (2019).
- A. Pandey, A. Kumar and A. Mishra, Int. J. Sci. Res. Rev., 8, 2087 (2019).
- Z. Demircioglu, A.E. Yesil, M. Altun, T. Bal-Demirci and N. Ozdemir, J. Mol. Struct., 1162, 96 (2018); https://doi.org/10.1016/j.molstruc.2018.02.093
- N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- R. Thirumurugan, B. Babu, K. Anitha and J. Chandrasekaran, J. Mol. Struct., 1171, 915 (2018); https://doi.org/10.1016/j.molstruc.2017.07.027
- D.A. McQuarrie and J.D. Simon, Molecular Thermodynamics; University Science Books: Sausalito, CA, USA (1999).
- J.W. Ochterski, Thermochemistry in Gaussian (2000); http://www.gaussian.com/thermo/thermo.pdf
- R. Zhang, B. Du, G. Sun and Y. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0
- P. Ertl, B. Rohde and P. Selzer, J. Med. Chem., 43, 3714 (2000); https://doi.org/10.1021/jm000942e
- http://www.molinspiration.com
- http://www.swissadme.ch/index.php
- A. Verma, Asian Pac. J. Trop. Biomed., 2, S1735 (2012); https://doi.org/10.1016/S2221-1691(12)60486-9
- http://preadmet.bmdrc.kr
- M. Yazdanian, S.L. Glynn, J.L. Wright and A. Hawi, Pharm. Res., 15, 1490 (1998); https://doi.org/10.1023/A:1011930411574
- B. Testa and S.D. Kraemer, Chem. Biodivers., 4, 257 (2007); https://doi.org/10.1002/cbdv.200790032
- Y.H. Zhao, J. Le, M.H. Abraham, P.J. Eddershaw, C.N. Luscombe, A. Hersey, D. Boutina, G. Beck, B. Sherborne, I. Cooper and J.A. Platts, J. Pharm. Sci., 90, 749 (2001); https://doi.org/10.1002/jps.1031
- S. Yee, Pharm. Res., 14, 763 (1997); https://doi.org/10.1023/A:1012102522787
- J.I. Vandenberg, B.D. Walker and T.J. Campbell, Trends Pharmacol. Sci., 22, 240 (2001); https://doi.org/10.1016/S0165-6147(00)01662-X
- A. Kumar, A. Pandey and A. Mishra, Asian J. Chem., 32, 706 (2020); https://doi.org/10.14233/ajchem.2020.22507
References
P. Vijayakumar, G.A. Babu and P. Ramasamy, Mater. Res. Bull., 47, 957 (2012); https://doi.org/10.1016/j.materresbull.2012.01.011
M. Samoc, A. Samoc, B. Luther-Davies, M.G. Humphrey and M.-S. Wong, Opt. Mater., 21, 485 (2003); https://doi.org/10.1016/S0925-3467(02)00187-8
A.M. Petrosyan, J. Cryst. Phys. Chem., 1, 33 (2010).
Y. Gao, Q. Chang, H. Ye, W. Jiao, Y. Song, Y. Wang and J. Qin, Appl.Phys. B, 88, 255 (2007); https://doi.org/10.1007/s00340-007-2687-6
A.J. Kiran, D. Udayakumar, K. Chandrasekharan, A.V. Adhikari and H.D. Shashikala, J. Phys. At. Mol. Opt. Phys., 39, 3747 (2006); https://doi.org/10.1088/0953-4075/39/18/005
A. Ronchi, T. Cassano, R. Tommasi, F. Babudri, A. Cardone, G.M. Farinola and F. Naso, Synth. Met., 139, 831 (2003); https://doi.org/10.1016/S0379-6779(03)00274-1
C. Li, L. Zhang, M. Yang, H. Wang and Y. Wang, Phys. Rev. A, 49, 1149 (1994); https://doi.org/10.1103/PhysRevA.49.1149
W. Sun, M.M. McKerns, C.M. Lawson, G.M. Gray, C. Zhan and D. Wang, Proc. SPIE Int. Soc. Opt. Eng., 4106, 280 (2000); https://doi.org/10.1117/12.408515
M. Kitazawa, R. Higuchi, M. Takahashi, T. Wada and H. Sasabe, Appl. Phys. Lett., 64, 2477 (1994); https://doi.org/10.1063/1.111602
W.S. Wang, M.D. Aggarwal, J. Choi, T. Gebre, A.D. Shields, B.G. Penn and D.O. Frazier, J. Cryst. Growth, 198-199, 578 (1999); https://doi.org/10.1016/S0022-0248(98)01041-0
M. Jazbinsek, L. Mutter and P. Gunter, IEEE J. Sel. Top. Quantum Electron., 14, 1298 (2008); https://doi.org/10.1109/JSTQE.2008.921407
J.M. Rivera, H. Reyes, A. Cortes, R. Santillan, P.G. Lacroix, C. Lepetit, K. Nakatani and N. Farfán, Chem. Mater., 18, 1174 (2006); https://doi.org/10.1021/cm051589+
B.B. Ivanova and M. Spiteller, J. Phys. Chem. A, 114, 5099 (2010); https://doi.org/10.1021/jp1002758
A.P. Menezes, A. Jayarama and S.W. Ng, J. Cryst. Growth, 402, 130 (2014); https://doi.org/10.1016/j.jcrysgro.2014.04.026
P. Salek, O. Vahtras, T. Helgaker and H. Ågren, J. Chem. Phys., 117, 9630 (2002); https://doi.org/10.1063/1.1516805
L.M. Haupert and G.J. Simpson, Ann. Rev. Phys. Chem., 60, 345 (2009); https://doi.org/10.1146/annurev.physchem.59.032607.093712
R. Zalesny, I.W. Bulik, W. Bartkowiak, J.M. Luis, A. Avramopoulos, M.G. Papadopoulos and P. Krawczyk, J. Chem. Phys., 133, 244308 (2010); https://doi.org/10.1063/1.3516209
N. Islam and A.H. Pandith, J. Mol. Model., 20, 2535 (2014); https://doi.org/10.1007/s00894-014-2535-7
S. van Elshocht, T. Verbiest, M. Kauranen, B.M.W. Langeveld-Voss, A. Persoons and E.W. Meijer, J. Chem. Phys., 107, 8201 (1997); https://doi.org/10.1063/1.475223
A. Wojciechowski, M.M.M. Raposo, M.C.R. Castro, W. Kuznik, I. Fuks-Janczarek, M. Pokladko-Kowar and F. Bures, J. Mater. Sci. Mater. Electron., 25, 1745 (2014); https://doi.org/10.1007/s10854-014-1793-6
T. Chen, Z. Sun, L. Li, S. Wang, Y. Wang, J. Luo and M. Hong, J. Cryst. Growth, 338, 157 (2012); https://doi.org/10.1016/j.jcrysgro.2011.10.023
P. Srinivasan, T. Kanagasekaran, N. Vijayan, G. Bhagavannarayana, R. Gopalakrishnan and P. Ramasamy, Opt. Mater., 30, 553 (2007); https://doi.org/10.1016/j.optmat.2007.01.014
L.N. Wang, X.Q. Wang, G.H. Zhang, X.T. Liu, Z.H. Sun, G.H. Sun, L. Wang, W.T. Yu and D. Xu, J. Cryst. Growth, 327, 133 (2011); https://doi.org/10.1016/j.jcrysgro.2011.05.010
M. Prakash, M. Lydia Caroline and D. Geetha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 108, 32 (2013); https://doi.org/10.1016/j.saa.2013.01.078
H. Koshima, H. Miyamoto, I. Yagi and K. Uosaki, Crystal Growth Des., 4, 807 (2004); https://doi.org/10.1021/cg034187s
V. Kannan, K. Thirupugalmani and S. Brahadeeswaran, J. Mol. Struct., 1049, 268 (2013); https://doi.org/10.1016/j.molstruc.2013.06.055
G. Shanmugam, K. Ravi Kumar, B. Sridhar and S. Brahadeeswaran, Mater. Res. Bull., 47, 2315 (2012); https://doi.org/10.1016/j.materresbull.2012.05.037
P. Asokan and S. Kalainathan, J. Phys. Chem. C, 121, 22384 (2017); https://doi.org/10.1021/acs.jpcc.7b07805
N. Karuppanan and S. Kalainathan, J. Phys. Chem. C, 122, 4572 (2018); https://doi.org/10.1021/acs.jpcc.7b11884
S. Kulshrestha and A.K. Shrivastava, Phys. Scr., 94, 025503 (2019); https://doi.org/10.1088/1402-4896/aafbf8
S. Sathiya, M. Senthilkumar and C.R. Raja, J. Mol. Struct., 1180, 81 (2019); https://doi.org/10.1016/j.molstruc.2018.11.067
S. Karthick, K. Thirupugalmani, V. Kannan, G. Shanmugam, M.K. Kumar, G. Vinitha, B. Sridhar and S. Brahadeeswaran, J. Mol. Struct., 1178, 352 (2019); https://doi.org/10.1016/j.molstruc.2018.10.048
P. Pandey and R.N. Rai, J. Mol. Struct., 1160, 189 (2018); https://doi.org/10.1016/j.molstruc.2018.02.002
A. Naeem, I.M. Khan and A. Ahmad, Russ. J. Phys. Chem. A, 85, 1840 (2011); https://doi.org/10.1134/S0036024411100128
I.M. Pavlovetc, S. Draguta, M.I. Fokina, T.V. Timofeeva and I.Y. Denisyuk, Opt. Commun., 362, 64 (2016); https://doi.org/10.1016/j.optcom.2015.05.034
R.W.G. Wyckoff and R.B. Corey, Z. Kristallogr., 81, 386 (1932); https://doi.org/10.1524/zkri.1932.81.1.386
http://www.sigmaaldrich.com/united-states.html
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2016).
E. Frich, H. P. Hratchian, R. D. Dennington II, T. A. Keith, John Millam, B. Nielsen, A. J. Holder and J. Hiscocks, Gaussian Inc.: GaussView Version 5.0.8 (2009).
M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, Poland (2004).
J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 111, 11683 (2007); https://doi.org/10.1021/jp073974n
M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); https://doi.org/10.1063/1.447079
R. Ditchfield, Mol. Phys., 27, 789 (1974); https://doi.org/10.1080/00268977400100711
J. Pratt, J. Hutchinson and C.L. Klein Stevens, Acta Cryst., 67C, o487 (2011); https://doi.org/10.1107/S0108270111041825
R.M. Silverstein, G.C. Basseler and C. Morill, Spectroscopic Identification of Organic Compounds, Wiley: New York, edn 4 (1981).
G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press: New York (1969).
N. Sundaraganesan, S. Ilakiamani, P. Subramani and B.D. Joshua, Spectrochim. Acta A Mol. Biomol. Spectrosc., 67, 628 (2007); https://doi.org/10.1016/j.saa.2006.08.020
V. Krishnakumar and R. Ramasamy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 2526 (2005); https://doi.org/10.1016/j.saa.2004.08.027
N. Puviarasan, V. Arjunan and S. Mohan, Turk. J. Chem., 26, 323 (2002).
N.B. Colthup, L.H. Daly and S.E. Wilberly, Introduction to Infrared and Raman Spectroscopy, 3rd Edn., Academic Press, Inc. USA (1990).
K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo and F. Hamada, Mater. Chem. Phys., 188, 131 (2017); https://doi.org/10.1016/j.matchemphys.2016.12.008
K. Thirupugalmani, S. Karthick, G. Shanmugam, V. Kannan, B. Sridhar, K. Nehru and S. Brahadeeswaran, Opt. Mater., 49, 158 (2015); https://doi.org/10.1016/j.optmat.2015.09.014
Y. Erdogdu, O. Unsalan and M.T. Gulluoglu, J. Raman Spectrosc., 41, 820 (2010); https://doi.org/10.1002/jrs.2520
E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486
P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039
R.G. Parr and W.J. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036
W. Yang and W.J.J. Mortier, Am. Chem. Soc., 108, 5708 (1986); https://doi.org/10.1021/ja00279a008
R.K. Roy, S. Krishnamurti, P. Geerlings and S. Pal, J. Phys. Chem. A, 102, 3746 (1998); https://doi.org/10.1021/jp973450v
P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u
V.G. Dimitriev, G.G. Gurzadyan and D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer: Berlin (1991).
M. Arivazhagan, V.P. Subhasini and R. Kavitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 527 (2014); https://doi.org/10.1016/j.saa.2014.02.093
D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977
M. Arivazhagan and R. Meenakshi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 82, 316 (2011); https://doi.org/10.1016/j.saa.2011.07.055
S. Panchapakesan, K. Subramani and B. Srinivasan, J. Mater. Sci. Mater. Electron., 28, 5754 (2017); https://doi.org/10.1007/s10854-016-6247-x
N. Sudharsana, V. Krishnakumar and R. Nagalakshmi, J. Cryst. Growth, 398, 45 (2014); https://doi.org/10.1016/j.jcrysgro.2014.03.051
S. Karthick, K. Thirupugalmani, G. Shanmugam, V. Kannan and S. Brahadeeswaran, J. Mol. Struct., 1156, 264 (2018); https://doi.org/10.1016/j.molstruc.2017.11.115
T. Chen, Z. Sun, C. Song, Y. Ge, J. Luo, W. Lin and M. Hong, Cryst. Growth Des., 12, 2673 (2012); https://doi.org/10.1021/cg300262t
V. Kannan S. Karthick and S. Brahadeeswaran, Z. Phys. Chem., 233, 1293 (2019); https://doi.org/10.1515/zpch-2018-1231
G. Shanmugam, K. Thirupugalmani, V. Kannan and S. Brahadeeswaran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 175 (2013); https://doi.org/10.1016/j.saa.2013.01.006
G. Shanmugam, M.S. Belsley, D. Isakov, E. de Matos Gomes, K. Nehru and S. Brahadeeswaran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 284 (2013); https://doi.org/10.1016/j.saa.2013.05.070
S. Gunsekaran and R.A. Balaji, Can. J. Anal. Sci. Spectrosc., 53, 149 (2008); https://doi.org/10.1515/znc-1999-3-405
A. Kumar, A. Pandey and A. Mishra, J. Biol. Chem. Res., 36 (Part-A), 1 (2019).
A. Kumar, A. Pandey and A. Mishra, J. Biol. Chem. Res., 36 (Part-B), 1 (2019)
A. Pandey, A. Kumar and A. Mishra J. Biol. Chem. Res., 36, 102 (2019).
A. Pandey, A. Kumar and A. Mishra, Int. J. Sci. Res. Rev., 8, 2087 (2019).
Z. Demircioglu, A.E. Yesil, M. Altun, T. Bal-Demirci and N. Ozdemir, J. Mol. Struct., 1162, 96 (2018); https://doi.org/10.1016/j.molstruc.2018.02.093
N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
R. Thirumurugan, B. Babu, K. Anitha and J. Chandrasekaran, J. Mol. Struct., 1171, 915 (2018); https://doi.org/10.1016/j.molstruc.2017.07.027
D.A. McQuarrie and J.D. Simon, Molecular Thermodynamics; University Science Books: Sausalito, CA, USA (1999).
J.W. Ochterski, Thermochemistry in Gaussian (2000); http://www.gaussian.com/thermo/thermo.pdf
R. Zhang, B. Du, G. Sun and Y. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0
P. Ertl, B. Rohde and P. Selzer, J. Med. Chem., 43, 3714 (2000); https://doi.org/10.1021/jm000942e
http://www.swissadme.ch/index.php
A. Verma, Asian Pac. J. Trop. Biomed., 2, S1735 (2012); https://doi.org/10.1016/S2221-1691(12)60486-9
M. Yazdanian, S.L. Glynn, J.L. Wright and A. Hawi, Pharm. Res., 15, 1490 (1998); https://doi.org/10.1023/A:1011930411574
B. Testa and S.D. Kraemer, Chem. Biodivers., 4, 257 (2007); https://doi.org/10.1002/cbdv.200790032
Y.H. Zhao, J. Le, M.H. Abraham, P.J. Eddershaw, C.N. Luscombe, A. Hersey, D. Boutina, G. Beck, B. Sherborne, I. Cooper and J.A. Platts, J. Pharm. Sci., 90, 749 (2001); https://doi.org/10.1002/jps.1031
S. Yee, Pharm. Res., 14, 763 (1997); https://doi.org/10.1023/A:1012102522787
J.I. Vandenberg, B.D. Walker and T.J. Campbell, Trends Pharmacol. Sci., 22, 240 (2001); https://doi.org/10.1016/S0165-6147(00)01662-X
A. Kumar, A. Pandey and A. Mishra, Asian J. Chem., 32, 706 (2020); https://doi.org/10.14233/ajchem.2020.22507