Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of g-Bi2MoO6 by Co-precipitation Method and Evaluation for Photocatalytic Degradation of Rhodamine B, Crystal Violet and Orange II Dyes Under Visible Light Irradiation
Corresponding Author(s) : Lavakusa Banavatu
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
g-Bismuth molybdate (g-Bi2MoO6) catalyst has been successfully synthesized by co-precipitation method and followed by calcination using stoichiometry ratio of bismuth nitrate, nitric acid, ammonium molybdate as precursor materials. The synthesized g-Bi2MoO6 nanoparticles characterized by X-ray diffraction for identifying crystalline phases and particle size, Raman spectroscopy identifies active species during the reaction, Fourier transform infrared spectroscopy is to identify adsorbed species and to study the way in which these species are chemisorbed at the surface of the catalyst, UV-visible diffuse reflectance spectroscopy (UV-DRS) revealed for band energy of semiconductors, Field emission scanning electron microscopy (FE-SEM) is to determine morphology and shape of supported particles and Energy dispersive X-ray analysis (EDX) is for elemental analysis of synthesized nanoparticles. The photocatalytic activity of g−Bi2MoO6 catalyst evaluated using the degradation of Rhodamine-B, Crystal Violet and Orange II dyes under visible light irradiation at room temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zollinger, Azo Dyes and Pigments, Colour Chemistry-Synthesis, Properties and Applications of Organic Dyes and Pigments, VCH, New York, pp. 92-100 ((1991).
- H. Al-Ekabi and N. Serpone, J. Phys. Chem., 92, 5726 (1988); https://doi.org/10.1021/j100331a036.
- S. Kutsuna, Y. Ebihara, K. Nakamura and T. Ibusuki, Atmos. Environ., 27, 599 (1993); https://doi.org/10.1016/0960-1686(93)90217-M.
- V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra and F. Miano, Appl. Catal. A, 69, 323 (1991); https://doi.org/10.1016/S0166-9834(00)83310-2.
- O. Legrini, E. Oliveros and A.M. Braun, Chem. Rev., 93, 671 (1993); https://doi.org/10.1021/cr00018a003.
- M. Anpo, H. Yamashita, Y. Ichihashi and S. Ehara, J. Electronal. Chem., 396, 21 (1995); https://doi.org/10.1016/0022-0728(95)04141-A.
- D.F. Ollis, C.Y. Hsiao, L. Budiam and C.L. Lee, J. Catal., 88, 89 (1984); https://doi.org/10.1016/0021-9517(84)90053-8.
- R.W. Matthews, Sol. Energy, 38, 405 (1987); https://doi.org/10.1016/0038-092X(87)90021-1.
- H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv. Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752.
- P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei and M.-H. Whangbo, Angew. Chem. Int. Ed., 47, 7931 (2008); https://doi.org/10.1002/anie.200802483.
- M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca and H. Idriss, Nat. Chem., 3, 489 (2011); https://doi.org/10.1038/nchem.1048.
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004.
- K. Honda and A. Fuhishima, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Photochem. Rev., 1, 1 (2000); https://doi.org/10.1016/S1389-5567(00)00002-2.
- Y. Park, S.H. Lee, S.O. Kang and W. Choi, Chem. Commun., 46, 2477 (2010); https://doi.org/10.1039/b924829c.
- D. Kannaiyan, E. Kim, N. Won, K.W. Kim, Y.H. Jang, M.-A. Cha, D.Y. Ryu, S. Kim and D.H. Kim, J. Mater. Chem., 20, 677 (2010); https://doi.org/10.1039/B917858A.
- R.E. Newnham, R.W. Wolfe and J.F. Dorrian, Mater. Res. Bull., 6, 1029 (1971); https://doi.org/10.1016/0025-5408(71)90082-1.
- P. Tao, Y. Xu, Y. Zhou, C. Song, Y. Qiu, W. Dong, M. Zhang and M. Shao, Mater. Res., 20, 786 (2017); https://doi.org/10.1590/1980-5373-mr-2016-0824.
- J. Li, X. Liu, Z. Sun and L. Pan, Ceramics Int., 41, 8592 (2015); https://doi.org/10.1016/j.ceramint.2015.03.068.
- A.P. Gorshkov, I.K. Kolchin, A.M. Gribov, L.Ya. Margolis j petroleum chemistry Volume 8, Issue 2 (1968) 118-122.
- N. Hykaway, W.M. Sears, R.F. Frindt and S.R. Morrison, Sens. Actuators, 15, 105 (1988); https://doi.org/10.1016/0250-6874(88)87001-X.
- F.R. Theobald, A. Laarif and A.W. Hewat, Ferroelectrics, 56, 219 (1984); https://doi.org/10.1080/00150198408221372.
- C.S. Guo, J. Xu, S.F. Wang, L. Li, Y. Zhang and X.C. Li, CrystEngComm, 14, 3602 (2012); https://doi.org/10.1039/c2ce06757a.
- M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang and Y. Liu, CrystEngComm, 14, 605 (2012); https://doi.org/10.1039/C1CE05974B.
- S. Williams, M. Puri, A.J. Jacobson and C.A. Mims, Catal. Today, 37, 43 (1997); https://doi.org/10.1016/S0920-5861(96)00258-1.
- M.T. Le, W.J.M. Van Well, I. Van Driessche and S. Hoste, Appl. Catal., 267, 227 (2004); https://doi.org/10.1016/j.apcata.2004.03.007.
- M.T. Le, W.J.M.V. Well, P. Stoltze, I.V. Driessche and S. Hoste, Appl. Catal., 282, 189 (2005); https://doi.org/10.1016/j.apcata.2004.12.010.
- Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 110, 17790 (2006); https://doi.org/10.1021/jp0622482.
- L. Zhou, W. Wang and L. Zhang, J. Mol. Catal. A, 268, 195 (2007); https://doi.org/10.1016/j.molcata.2006.12.026.
- A.M. Beale and G. Sankar, Chem. Mater., 15, 146 (2003); https://doi.org/10.1021/cm020463z.
- M.T. Le, L.H. Bac, I. Van Driessche, S. Hoste and W.J.M. Van Well, Catal. Today, 131, 566 (2008); https://doi.org/10.1016/j.cattod.2007.10.038.
- A. Martínez-de la Cruz and S. Obregón Alfaro, J. Mol. Catal. Chem., 320, 85 (2010); https://doi.org/10.1016/j.molcata.2010.01.008.
- E. Luévano-Hipólito,A.M. Cruz and E.L. Cuéllar, J. Taiwan Inst. Chem. Eng., 45, 2749 (2014); https://doi.org/10.1016/j.jtice.2014.05.024.
- E. Luévano-Hipólito, A.M. Cruz, Q.L. Yu and H.J.H. Brouwers, Appl. Catal. A, 468, 322 (2013); https://doi.org/10.1016/j.apcata.2013.09.013.
- J.C. Jung, H. Kim, A.S. Choi, Y.M. Chung, T.J. Kim, S.J. Lee, S.H. Oh and I.K. Song, J. Mol. Catal. Chem., 259, 166 (2006); https://doi.org/10.1016/j.molcata.2006.06.022.
- W.J.M. van Well, M.T. Le, N.C. Schiodt, S. Hoste and P. Stoltze, J. Mol. Catal. Chem., 256, 1 (2006); https://doi.org/10.1016/j.molcata.2006.04.030.
- T. Zhang, J. Huang, S. Zhou, H. Ouyang, L. Cao and A. Li, Ceramics Int., 39, 7391 (2013); https://doi.org/10.1016/j.ceramint.2013.02.079.
- Y.H. Shi, S.H. Feng and C.S. Cao, Mater. Lett., 44, 215 (2000); https://doi.org/10.1016/S0167-577X(00)00030-6.
- R. Murugan, Phys B, 352, 227 (2004); https://doi.org/10.1016/j.physb.2004.07.015.
- A. Phuruangrat, P. Jitrou, P. Dumrongrojthanath, N. Ekthammathat, B. Kuntalue, S. Thongtem and T. Thongtem, J. Nanomater., Article ID 789705 (2003); https://doi.org/10.1155/2013/789705.
- L.M. Thang, Ph.D. Thesis, Synthesis andApplication of Bismuth Molybdates, Ghent University, Gent, Belgium (2005).
- F.D. Hardcastle and E.I. Wachs, J. Phys. Chem., 95, 5031 (1991); https://doi.org/10.1021/j100166a025.
- P. Graves, G. Hua and S. Myhra and J.G. Thompson, J. Solid State Chem., 114, 112 (1995); https://doi.org/10.1006/jssc.1995.1017.
- K. Tashiro and M. Kobayashi, Polymer, 32, 1516 (1991); https://doi.org/10.1016/0032-3861(91)90435-L.
- D. Chen, Q. Hao, Z. Wang, H. Ding and Y. Zhu, CrystEngComm, 18, 1976 (2016); https://doi.org/10.1039/C6CE00264A.
- J. Yu and A. Kudo, Chem. Lett., 34, 1528 (2005); https://doi.org/10.1246/cl.2005.1528.
- B. Cheng, W. Wang, L. Shi, J. Ran and H. Yu, Int. J. Photoenergy, Article ID 797968 (2012); https://doi.org/10.1155/2012/797968.
- Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen and Y. Xie, J. Mol. Catal. A, 303, 9 (2009); https://doi.org/10.1016/j.molcata.2008.12.010
References
H. Zollinger, Azo Dyes and Pigments, Colour Chemistry-Synthesis, Properties and Applications of Organic Dyes and Pigments, VCH, New York, pp. 92-100 ((1991).
H. Al-Ekabi and N. Serpone, J. Phys. Chem., 92, 5726 (1988); https://doi.org/10.1021/j100331a036.
S. Kutsuna, Y. Ebihara, K. Nakamura and T. Ibusuki, Atmos. Environ., 27, 599 (1993); https://doi.org/10.1016/0960-1686(93)90217-M.
V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra and F. Miano, Appl. Catal. A, 69, 323 (1991); https://doi.org/10.1016/S0166-9834(00)83310-2.
O. Legrini, E. Oliveros and A.M. Braun, Chem. Rev., 93, 671 (1993); https://doi.org/10.1021/cr00018a003.
M. Anpo, H. Yamashita, Y. Ichihashi and S. Ehara, J. Electronal. Chem., 396, 21 (1995); https://doi.org/10.1016/0022-0728(95)04141-A.
D.F. Ollis, C.Y. Hsiao, L. Budiam and C.L. Lee, J. Catal., 88, 89 (1984); https://doi.org/10.1016/0021-9517(84)90053-8.
R.W. Matthews, Sol. Energy, 38, 405 (1987); https://doi.org/10.1016/0038-092X(87)90021-1.
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv. Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752.
P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei and M.-H. Whangbo, Angew. Chem. Int. Ed., 47, 7931 (2008); https://doi.org/10.1002/anie.200802483.
M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca and H. Idriss, Nat. Chem., 3, 489 (2011); https://doi.org/10.1038/nchem.1048.
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004.
K. Honda and A. Fuhishima, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Photochem. Rev., 1, 1 (2000); https://doi.org/10.1016/S1389-5567(00)00002-2.
Y. Park, S.H. Lee, S.O. Kang and W. Choi, Chem. Commun., 46, 2477 (2010); https://doi.org/10.1039/b924829c.
D. Kannaiyan, E. Kim, N. Won, K.W. Kim, Y.H. Jang, M.-A. Cha, D.Y. Ryu, S. Kim and D.H. Kim, J. Mater. Chem., 20, 677 (2010); https://doi.org/10.1039/B917858A.
R.E. Newnham, R.W. Wolfe and J.F. Dorrian, Mater. Res. Bull., 6, 1029 (1971); https://doi.org/10.1016/0025-5408(71)90082-1.
P. Tao, Y. Xu, Y. Zhou, C. Song, Y. Qiu, W. Dong, M. Zhang and M. Shao, Mater. Res., 20, 786 (2017); https://doi.org/10.1590/1980-5373-mr-2016-0824.
J. Li, X. Liu, Z. Sun and L. Pan, Ceramics Int., 41, 8592 (2015); https://doi.org/10.1016/j.ceramint.2015.03.068.
A.P. Gorshkov, I.K. Kolchin, A.M. Gribov, L.Ya. Margolis j petroleum chemistry Volume 8, Issue 2 (1968) 118-122.
N. Hykaway, W.M. Sears, R.F. Frindt and S.R. Morrison, Sens. Actuators, 15, 105 (1988); https://doi.org/10.1016/0250-6874(88)87001-X.
F.R. Theobald, A. Laarif and A.W. Hewat, Ferroelectrics, 56, 219 (1984); https://doi.org/10.1080/00150198408221372.
C.S. Guo, J. Xu, S.F. Wang, L. Li, Y. Zhang and X.C. Li, CrystEngComm, 14, 3602 (2012); https://doi.org/10.1039/c2ce06757a.
M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang and Y. Liu, CrystEngComm, 14, 605 (2012); https://doi.org/10.1039/C1CE05974B.
S. Williams, M. Puri, A.J. Jacobson and C.A. Mims, Catal. Today, 37, 43 (1997); https://doi.org/10.1016/S0920-5861(96)00258-1.
M.T. Le, W.J.M. Van Well, I. Van Driessche and S. Hoste, Appl. Catal., 267, 227 (2004); https://doi.org/10.1016/j.apcata.2004.03.007.
M.T. Le, W.J.M.V. Well, P. Stoltze, I.V. Driessche and S. Hoste, Appl. Catal., 282, 189 (2005); https://doi.org/10.1016/j.apcata.2004.12.010.
Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 110, 17790 (2006); https://doi.org/10.1021/jp0622482.
L. Zhou, W. Wang and L. Zhang, J. Mol. Catal. A, 268, 195 (2007); https://doi.org/10.1016/j.molcata.2006.12.026.
A.M. Beale and G. Sankar, Chem. Mater., 15, 146 (2003); https://doi.org/10.1021/cm020463z.
M.T. Le, L.H. Bac, I. Van Driessche, S. Hoste and W.J.M. Van Well, Catal. Today, 131, 566 (2008); https://doi.org/10.1016/j.cattod.2007.10.038.
A. Martínez-de la Cruz and S. Obregón Alfaro, J. Mol. Catal. Chem., 320, 85 (2010); https://doi.org/10.1016/j.molcata.2010.01.008.
E. Luévano-Hipólito,A.M. Cruz and E.L. Cuéllar, J. Taiwan Inst. Chem. Eng., 45, 2749 (2014); https://doi.org/10.1016/j.jtice.2014.05.024.
E. Luévano-Hipólito, A.M. Cruz, Q.L. Yu and H.J.H. Brouwers, Appl. Catal. A, 468, 322 (2013); https://doi.org/10.1016/j.apcata.2013.09.013.
J.C. Jung, H. Kim, A.S. Choi, Y.M. Chung, T.J. Kim, S.J. Lee, S.H. Oh and I.K. Song, J. Mol. Catal. Chem., 259, 166 (2006); https://doi.org/10.1016/j.molcata.2006.06.022.
W.J.M. van Well, M.T. Le, N.C. Schiodt, S. Hoste and P. Stoltze, J. Mol. Catal. Chem., 256, 1 (2006); https://doi.org/10.1016/j.molcata.2006.04.030.
T. Zhang, J. Huang, S. Zhou, H. Ouyang, L. Cao and A. Li, Ceramics Int., 39, 7391 (2013); https://doi.org/10.1016/j.ceramint.2013.02.079.
Y.H. Shi, S.H. Feng and C.S. Cao, Mater. Lett., 44, 215 (2000); https://doi.org/10.1016/S0167-577X(00)00030-6.
R. Murugan, Phys B, 352, 227 (2004); https://doi.org/10.1016/j.physb.2004.07.015.
A. Phuruangrat, P. Jitrou, P. Dumrongrojthanath, N. Ekthammathat, B. Kuntalue, S. Thongtem and T. Thongtem, J. Nanomater., Article ID 789705 (2003); https://doi.org/10.1155/2013/789705.
L.M. Thang, Ph.D. Thesis, Synthesis andApplication of Bismuth Molybdates, Ghent University, Gent, Belgium (2005).
F.D. Hardcastle and E.I. Wachs, J. Phys. Chem., 95, 5031 (1991); https://doi.org/10.1021/j100166a025.
P. Graves, G. Hua and S. Myhra and J.G. Thompson, J. Solid State Chem., 114, 112 (1995); https://doi.org/10.1006/jssc.1995.1017.
K. Tashiro and M. Kobayashi, Polymer, 32, 1516 (1991); https://doi.org/10.1016/0032-3861(91)90435-L.
D. Chen, Q. Hao, Z. Wang, H. Ding and Y. Zhu, CrystEngComm, 18, 1976 (2016); https://doi.org/10.1039/C6CE00264A.
J. Yu and A. Kudo, Chem. Lett., 34, 1528 (2005); https://doi.org/10.1246/cl.2005.1528.
B. Cheng, W. Wang, L. Shi, J. Ran and H. Yu, Int. J. Photoenergy, Article ID 797968 (2012); https://doi.org/10.1155/2012/797968.
Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen and Y. Xie, J. Mol. Catal. A, 303, 9 (2009); https://doi.org/10.1016/j.molcata.2008.12.010