Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Graphene Oxide Supported Ruthenium, Silver and Ruthenium-Silver Nanoparticles as Catalyst with Antibacterial Activity
Corresponding Author(s) : Perumal Andal
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
In this study, two different types of graphene oxide supported nanoparticles e.g., ruthenium, silver and a bimetallic Ru-Ag nanoparticles were synthesized. The size and shape of the products were characterized by various techniques viz., scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) field emission scanning electron microscopy with edax (FESEM-EDAX) X-ray diffraction spectroscopy (XRD) Raman analyses followed by kinetic study. The results proved that the newly developed graphene oxide carried ruthenium-silver nanoparticles catalysts can be more efficient to reductive, oxidative and of environmentally important organic pollutant. It also has good biological activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q.H. Tran, V.Q. Nguyen and A.T. Le, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4, 1 (2013).
- M. De, P.S. Ghosh and V.M. Rotello, Adv. Mater., 20, 4225 (2008); https://doi.org/10.1002/adma.200703183.
- A.-H. Lu, E.L. Salabas and F. Schuth, Angew. Chem. Int. Ed. Engl., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866.
- R. Ghosh Chaudhuri and S. Paria, Chem. Rev., 112, 2373 (2012); https://doi.org/10.1021/cr100449n.
- V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Sur. Interf., 145, 63 (2009).
- Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin and G.V. Lisichkin, Russ. Chem. Rev., 77, 233 (2008); https://doi.org/10.1070/RC2008v077n03ABEH003751.
- D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. Camargo and D.B. Barbosa, Antimicrob. Agents, 34, 103 (2009); https://doi.org/10.1016/j.ijantimicag.2009.01.017.
- M. Ahamed, M.S. AlSalhi and M.K.J. Siddiqui, Clin. Chim. Acta, 411, 1841 (2010); https://doi.org/10.1016/j.cca.2010.08.016.
- J. García-Barrasa, J.M. López-de-Luzuriaga and M. Monge, Cent. Eur. J. Chem., 9, 7 (2011); https://doi.org/10.2478/s11532-010-0124-x.
- J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway and J.R. Lead, Environ. Int., 37, 517 (2011); https://doi.org/10.1016/j.envint.2010.10.012.
- P. Dallas, V.K. Sharma and R. Zboril, Adv. Colloid Interface Sci., 166, 119 (2011); https://doi.org/10.1016/j.cis.2011.05.008.
- Y. Sun and Y. Xia, Science, 298, 2176 (2002); https://doi.org/10.1126/science.1077229.
- D. Kim, S. Jeong and J. Moon, Nanotechnology, 17, 4019 (2006); https://doi.org/10.1088/0957-4484/17/16/004.
- M. Chen, Y.G. Feng, X. Wang, T.C. Li, J.Y. Zhang and D.J. Qian, Langmuir, 23, 5296 (2007); https://doi.org/10.1021/la700553d.
- S.F. Chen and H. Zhang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035006 (2012); https://doi.org/10.1088/2043-6262/3/3/035006.
- T.M.D. Dang, T.T.T. Le, E.F Blance and M.C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035004 (2012); https://doi.org/10.1088/2043-6262/3/3/035004.
- R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han and S.S. Kolekar, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 015013 (2012); https://doi.org/10.1088/2043-6262/3/1/015013.
- D.K. Lee and Y.S. Kang, ETRI J., 26, 252 (2004); https://doi.org/10.4218/etrij.04.0103.0061.
- A.J. Christy and M. Umadevi, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035013 (2013); https://doi.org/10.1088/2043-6262/3/3/035013.
- M. Sakamoto, M. Fujistuka and T. Majima, J. Photochem. Photobiol. Chem., 10, 33 (2009); https://doi.org/10.1016/j.jphotochemrev.2008.11.002.
- C. Marambio-Jones and E.M.V. Hoek, J. Nanopart. Res., 12, 1531 (2010); https://doi.org/10.1007/s11051-010-9900-y.
- D.A. Enoch, H.A. Ludlam and N.M. Brown, J. Med. Microbiol., 55, 809 (2006); https://doi.org/10.1099/jmm.0.46548-0.
References
Q.H. Tran, V.Q. Nguyen and A.T. Le, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4, 1 (2013).
M. De, P.S. Ghosh and V.M. Rotello, Adv. Mater., 20, 4225 (2008); https://doi.org/10.1002/adma.200703183.
A.-H. Lu, E.L. Salabas and F. Schuth, Angew. Chem. Int. Ed. Engl., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866.
R. Ghosh Chaudhuri and S. Paria, Chem. Rev., 112, 2373 (2012); https://doi.org/10.1021/cr100449n.
V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Sur. Interf., 145, 63 (2009).
Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin and G.V. Lisichkin, Russ. Chem. Rev., 77, 233 (2008); https://doi.org/10.1070/RC2008v077n03ABEH003751.
D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. Camargo and D.B. Barbosa, Antimicrob. Agents, 34, 103 (2009); https://doi.org/10.1016/j.ijantimicag.2009.01.017.
M. Ahamed, M.S. AlSalhi and M.K.J. Siddiqui, Clin. Chim. Acta, 411, 1841 (2010); https://doi.org/10.1016/j.cca.2010.08.016.
J. García-Barrasa, J.M. López-de-Luzuriaga and M. Monge, Cent. Eur. J. Chem., 9, 7 (2011); https://doi.org/10.2478/s11532-010-0124-x.
J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway and J.R. Lead, Environ. Int., 37, 517 (2011); https://doi.org/10.1016/j.envint.2010.10.012.
P. Dallas, V.K. Sharma and R. Zboril, Adv. Colloid Interface Sci., 166, 119 (2011); https://doi.org/10.1016/j.cis.2011.05.008.
Y. Sun and Y. Xia, Science, 298, 2176 (2002); https://doi.org/10.1126/science.1077229.
D. Kim, S. Jeong and J. Moon, Nanotechnology, 17, 4019 (2006); https://doi.org/10.1088/0957-4484/17/16/004.
M. Chen, Y.G. Feng, X. Wang, T.C. Li, J.Y. Zhang and D.J. Qian, Langmuir, 23, 5296 (2007); https://doi.org/10.1021/la700553d.
S.F. Chen and H. Zhang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035006 (2012); https://doi.org/10.1088/2043-6262/3/3/035006.
T.M.D. Dang, T.T.T. Le, E.F Blance and M.C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035004 (2012); https://doi.org/10.1088/2043-6262/3/3/035004.
R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han and S.S. Kolekar, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 015013 (2012); https://doi.org/10.1088/2043-6262/3/1/015013.
D.K. Lee and Y.S. Kang, ETRI J., 26, 252 (2004); https://doi.org/10.4218/etrij.04.0103.0061.
A.J. Christy and M. Umadevi, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035013 (2013); https://doi.org/10.1088/2043-6262/3/3/035013.
M. Sakamoto, M. Fujistuka and T. Majima, J. Photochem. Photobiol. Chem., 10, 33 (2009); https://doi.org/10.1016/j.jphotochemrev.2008.11.002.
C. Marambio-Jones and E.M.V. Hoek, J. Nanopart. Res., 12, 1531 (2010); https://doi.org/10.1007/s11051-010-9900-y.
D.A. Enoch, H.A. Ludlam and N.M. Brown, J. Med. Microbiol., 55, 809 (2006); https://doi.org/10.1099/jmm.0.46548-0.