Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantum Chemical Computational Studies of Nitrogen Rich Energetic Organic Crystalline Salt: 2,4-Diamino-6-methyl-1,3,5-triazinium Trifluroacetate
Asian Journal of Chemistry,
Vol. 32 No. 10 (2020): Vol 32 Issue 10
Abstract
An organic crystalline salt 2,4-diamino-6-methyl-1,3,5-triazinium trifluroacetate (DMTFA) has been imposed for experimental and theoretical investigation. Gaussian 09 program has been used to compute the quantum chemical theoretical calculations. DFT/B3LYP-6-311++G(d,p) approach is adapted to optimize the structure. Structural and vibrational studies have been carried out by this approach followed by the correlation of experimental and theoretical results. Natural bonding orbital analysis, molecular electrostatic potential and frontier molecular orbital investigations substantiates the charge transfer besides the presence of strong inter and intra molecular interactions. Apart from the three dimensional Hirshfeld surface analysis and two dimensional fingerprint maps provides profund vision about the intermolecular interactions between the molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Lehn, Pure Appl. Chem., 50, 871 (1978); https://doi.org/10.1351/pac197850090871
- J.M. Lehn, Supramolecular Chemistry, VCH: Weinheim (1995).
- J. Barbera, L. Puig, P. Romero, J.L. Serrano and T. Sierra, J. Am. Chem. Soc., 128, 4487 (2006); https://doi.org/10.1021/ja0585477
- G.R. Desiraju, Perspectives in Supramolecular Chemistry; The Crystal as a Supramolecular Entity, Wiley: Chichester, vol. 2 (1996).
- H. Zhong, H. Lai and Q. Fang, J. Phys. Chem. C, 115, 2423 (2011); https://doi.org/10.1021/jp109806m
- R. Sangeetha, K. Balasubramani, K. Thanigaimani and S.J. Kavitha, Acta Crystallogr. Sect. E Struct. Rep. Online, 74, 944 (2018); https://doi.org/10.1107/S2056989018008307
- Y. Xiao, B. Jin, R. Peng, J. Zhao, Q. Liu and S. Chu, J. Mol. Struct., 1146, 417 (2017); https://doi.org/10.1016/j.molstruc.2017.06.030
- Z.Y. Xiao, W.Q. Wang, R.Y. Xue, L. Zhao, L. Wang and Y.H. Zhang, Sci. China Chem., 57, 1731 (2014); https://doi.org/10.1007/s11426-014-5101-3
- X.-B. Chen, S.-N. Wang, J.-F. Bai and Y.-Z. Li, J. Coord. Chem., 60, 1941 (2007); https://doi.org/10.1080/00958970601183466
- Y. Mary, Int. J. Ind. Chem., 2, 209 (2011).
- G.J. Perpetuo and J. Janczak, Acta Crystallogr., C63, o271 (2007); https://doi.org/10.1107/S0108270107010165
- D. Xu, X.Q. Wang, W.T. Yu, S.X. Xu and G.H. Zhang, J. Cryst. Growth, 253, 481 (2003); https://doi.org/10.1016/S0022-0248(03)01084-4
- N. Fuson, M.L. Josien, E.A. Jones and J.R. Lawson, J. Chem. Phys., 20, 1627 (1952); https://doi.org/10.1063/1.1700229
- R.E. Kagarise, J. Chem. Phys., 27, 519 (1957); https://doi.org/10.1063/1.1743760
- R.L. Redington and K.C. Lin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 27, 2445 (1971); https://doi.org/10.1016/0584-8539(71)80143-5
- R.L. Redington and K.C. Lin, J. Chem. Phys., 54, 4111 (1971); https://doi.org/10.1063/1.1675474
- N. Singh and B. Kumar, Physica B, 406, 2152 (2011); https://doi.org/10.1016/j.physb.2011.03.020
- P.V. Dhanaraj, N.P. Rajesh, J.K. Sundar, S. Natarajan and G. Vinitha, Mater. Chem. Phys., 129, 457 (2011); https://doi.org/10.1016/j.matchemphys.2011.04.041
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
- F. Weinhold and E.D. Glendening, NBO Version 3.1, TCI, Madison: University of Wisconsin, Wisconsin, USA (1998).
- R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, Gauss View, Version 5 (2009).
- R.J. Gillespie, J. Chem. Educ., 40, 295 (1963); https://doi.org/10.1021/ed040p295
- R.J. Gillespie, Chem. Soc. Rev., 21, 59 (1992); https://doi.org/10.1039/cs9922100059
- N. Kanagathara, M.K. Marchewka, M. Drozd, N.G. Renganathan, S. Gunasekaran and G. Anbalagan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 343 (2013); https://doi.org/10.1016/j.saa.2013.04.001
- K. Aoki, M. Inaba, S. Teratani, H. Yamazaki and Y. Miyashita, Inorg. Chem., 33, 3018 (1994); https://doi.org/10.1021/ic00091a050
- V. Sangeetha, M. Govindarajan, N. Kanagathara, M.K. Marchewka, S. Gunasekaran and G. Anbalagan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 252 (2014); https://doi.org/10.1016/j.saa.2014.01.018
- N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press: New York (1990).
- R.J. Meier, J.R. Maple, M.J. Hwang and A.T. Hagler, J. Phys. Chem., 99, 5445 (1995); https://doi.org/10.1021/j100015a030
- M.P. Fernandez-Liencres, A. Navarro, J.J. Lopez-Gonzalez, M. FernándezGómez, J. Tomkinson and G.J. Kearley, Chem. Phys., 266, 1 (2001); https://doi.org/10.1016/S0301-0104(01)00326-3
- W.J. Jones and W.J. Orville-Thomas, Trans. Faraday Soc., 55, 193 (1959); https://doi.org/10.1039/tf9595500193
- P.J. Larkin, M.P. Makowski, N.B. Colthup and L.A. Flood, Vib. Spectrosc., 17, 53 (1998); https://doi.org/10.1016/S0924-2031(98)00015-0
- Y.L. Wang, A.M. Mebel, C.J. Wu, Y.T. Chen, C.-E. Lin and J.-C. Jiang, Faraday Trans., 93, 3445 (1997); https://doi.org/10.1039/a701732d
- M. Drozd and M.K. Marchewka, J. Mol. Struct. THEOCHEM, 716, 175 (2005); https://doi.org/10.1016/j.theochem.2004.11.020
- G. Socrates, Infrared Characteristic Group Frequencies, Wiley Intersciences Publication: New York (1980).
- Z.H. Sun, L. Zhang, D. Xu, X.Q. Wang, X.J. Liu and G.H. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 663 (2008); https://doi.org/10.1016/j.saa.2008.01.024
- M.E.D. Lestard, M.E. Tuttolomondo, D.A. Wann, H.E. Robertson, D.W.H. Rankin and A. Ben Altabef, J. Chem. Phys., 131, 214303 (2009); https://doi.org/10.1063/1.3267633
- R.E. Robinson and R.C. Taylor, Spectrochim. Acta, 18, 1093 (1962); https://doi.org/10.1016/0371-1951(62)80120-9
- G.H. Sun, X.T. Sun, Z.H. Sun, X.Q. Wang, X.J. Liu, G.H. Zhang and D. Xu, Growth, 311, 3904 (2009); https://doi.org/10.1016/j.jcrysgro.2009.06.022
- I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley: London (1976).
- H. Tanak, J. Mol. Struct. THEOCHEM, 950, 5 (2010); https://doi.org/10.1016/j.theochem.2010.03.015
- R.G. Parr, L. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u
- R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys., 68, 3801 (1978); https://doi.org/10.1063/1.436185
- N. Balamurugan, C. Charanya, S. SampathKrishnan and S. Muthu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 1374 (2015); https://doi.org/10.1016/j.saa.2014.09.048
- H. Tanak, M.K. Marchewka and M. Drozd, Spectrochim. Acta A Mol. Biomol. Spectrosc., 105, 156 (2013); https://doi.org/10.1016/j.saa.2012.12.025
- E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1
- J. George, J.C. Prasana, S. Muthu, T.K. Kuruvilla and R.S. Saji, Chem. Data Collect., 26, 100360 (2020); https://doi.org/10.1016/j.cdc.2020.100360
- M.H. Rahuman, S. Muthu, B. Raajaraman and M. Raja, Chem. Data Collect., 26, 100352 (2020); https://doi.org/10.1016/j.cdc.2020.100352
- S.K. Wolff, D.J. Greenwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka and M.A. Spackman, Crystal Explorer, Version 3.1 (2012).
References
J.M. Lehn, Pure Appl. Chem., 50, 871 (1978); https://doi.org/10.1351/pac197850090871
J.M. Lehn, Supramolecular Chemistry, VCH: Weinheim (1995).
J. Barbera, L. Puig, P. Romero, J.L. Serrano and T. Sierra, J. Am. Chem. Soc., 128, 4487 (2006); https://doi.org/10.1021/ja0585477
G.R. Desiraju, Perspectives in Supramolecular Chemistry; The Crystal as a Supramolecular Entity, Wiley: Chichester, vol. 2 (1996).
H. Zhong, H. Lai and Q. Fang, J. Phys. Chem. C, 115, 2423 (2011); https://doi.org/10.1021/jp109806m
R. Sangeetha, K. Balasubramani, K. Thanigaimani and S.J. Kavitha, Acta Crystallogr. Sect. E Struct. Rep. Online, 74, 944 (2018); https://doi.org/10.1107/S2056989018008307
Y. Xiao, B. Jin, R. Peng, J. Zhao, Q. Liu and S. Chu, J. Mol. Struct., 1146, 417 (2017); https://doi.org/10.1016/j.molstruc.2017.06.030
Z.Y. Xiao, W.Q. Wang, R.Y. Xue, L. Zhao, L. Wang and Y.H. Zhang, Sci. China Chem., 57, 1731 (2014); https://doi.org/10.1007/s11426-014-5101-3
X.-B. Chen, S.-N. Wang, J.-F. Bai and Y.-Z. Li, J. Coord. Chem., 60, 1941 (2007); https://doi.org/10.1080/00958970601183466
Y. Mary, Int. J. Ind. Chem., 2, 209 (2011).
G.J. Perpetuo and J. Janczak, Acta Crystallogr., C63, o271 (2007); https://doi.org/10.1107/S0108270107010165
D. Xu, X.Q. Wang, W.T. Yu, S.X. Xu and G.H. Zhang, J. Cryst. Growth, 253, 481 (2003); https://doi.org/10.1016/S0022-0248(03)01084-4
N. Fuson, M.L. Josien, E.A. Jones and J.R. Lawson, J. Chem. Phys., 20, 1627 (1952); https://doi.org/10.1063/1.1700229
R.E. Kagarise, J. Chem. Phys., 27, 519 (1957); https://doi.org/10.1063/1.1743760
R.L. Redington and K.C. Lin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 27, 2445 (1971); https://doi.org/10.1016/0584-8539(71)80143-5
R.L. Redington and K.C. Lin, J. Chem. Phys., 54, 4111 (1971); https://doi.org/10.1063/1.1675474
N. Singh and B. Kumar, Physica B, 406, 2152 (2011); https://doi.org/10.1016/j.physb.2011.03.020
P.V. Dhanaraj, N.P. Rajesh, J.K. Sundar, S. Natarajan and G. Vinitha, Mater. Chem. Phys., 129, 457 (2011); https://doi.org/10.1016/j.matchemphys.2011.04.041
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
F. Weinhold and E.D. Glendening, NBO Version 3.1, TCI, Madison: University of Wisconsin, Wisconsin, USA (1998).
R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, Gauss View, Version 5 (2009).
R.J. Gillespie, J. Chem. Educ., 40, 295 (1963); https://doi.org/10.1021/ed040p295
R.J. Gillespie, Chem. Soc. Rev., 21, 59 (1992); https://doi.org/10.1039/cs9922100059
N. Kanagathara, M.K. Marchewka, M. Drozd, N.G. Renganathan, S. Gunasekaran and G. Anbalagan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 343 (2013); https://doi.org/10.1016/j.saa.2013.04.001
K. Aoki, M. Inaba, S. Teratani, H. Yamazaki and Y. Miyashita, Inorg. Chem., 33, 3018 (1994); https://doi.org/10.1021/ic00091a050
V. Sangeetha, M. Govindarajan, N. Kanagathara, M.K. Marchewka, S. Gunasekaran and G. Anbalagan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 252 (2014); https://doi.org/10.1016/j.saa.2014.01.018
N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press: New York (1990).
R.J. Meier, J.R. Maple, M.J. Hwang and A.T. Hagler, J. Phys. Chem., 99, 5445 (1995); https://doi.org/10.1021/j100015a030
M.P. Fernandez-Liencres, A. Navarro, J.J. Lopez-Gonzalez, M. FernándezGómez, J. Tomkinson and G.J. Kearley, Chem. Phys., 266, 1 (2001); https://doi.org/10.1016/S0301-0104(01)00326-3
W.J. Jones and W.J. Orville-Thomas, Trans. Faraday Soc., 55, 193 (1959); https://doi.org/10.1039/tf9595500193
P.J. Larkin, M.P. Makowski, N.B. Colthup and L.A. Flood, Vib. Spectrosc., 17, 53 (1998); https://doi.org/10.1016/S0924-2031(98)00015-0
Y.L. Wang, A.M. Mebel, C.J. Wu, Y.T. Chen, C.-E. Lin and J.-C. Jiang, Faraday Trans., 93, 3445 (1997); https://doi.org/10.1039/a701732d
M. Drozd and M.K. Marchewka, J. Mol. Struct. THEOCHEM, 716, 175 (2005); https://doi.org/10.1016/j.theochem.2004.11.020
G. Socrates, Infrared Characteristic Group Frequencies, Wiley Intersciences Publication: New York (1980).
Z.H. Sun, L. Zhang, D. Xu, X.Q. Wang, X.J. Liu and G.H. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 663 (2008); https://doi.org/10.1016/j.saa.2008.01.024
M.E.D. Lestard, M.E. Tuttolomondo, D.A. Wann, H.E. Robertson, D.W.H. Rankin and A. Ben Altabef, J. Chem. Phys., 131, 214303 (2009); https://doi.org/10.1063/1.3267633
R.E. Robinson and R.C. Taylor, Spectrochim. Acta, 18, 1093 (1962); https://doi.org/10.1016/0371-1951(62)80120-9
G.H. Sun, X.T. Sun, Z.H. Sun, X.Q. Wang, X.J. Liu, G.H. Zhang and D. Xu, Growth, 311, 3904 (2009); https://doi.org/10.1016/j.jcrysgro.2009.06.022
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley: London (1976).
H. Tanak, J. Mol. Struct. THEOCHEM, 950, 5 (2010); https://doi.org/10.1016/j.theochem.2010.03.015
R.G. Parr, L. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u
R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys., 68, 3801 (1978); https://doi.org/10.1063/1.436185
N. Balamurugan, C. Charanya, S. SampathKrishnan and S. Muthu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 1374 (2015); https://doi.org/10.1016/j.saa.2014.09.048
H. Tanak, M.K. Marchewka and M. Drozd, Spectrochim. Acta A Mol. Biomol. Spectrosc., 105, 156 (2013); https://doi.org/10.1016/j.saa.2012.12.025
E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1
J. George, J.C. Prasana, S. Muthu, T.K. Kuruvilla and R.S. Saji, Chem. Data Collect., 26, 100360 (2020); https://doi.org/10.1016/j.cdc.2020.100360
M.H. Rahuman, S. Muthu, B. Raajaraman and M. Raja, Chem. Data Collect., 26, 100352 (2020); https://doi.org/10.1016/j.cdc.2020.100352
S.K. Wolff, D.J. Greenwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka and M.A. Spackman, Crystal Explorer, Version 3.1 (2012).