Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Properties of Two Fe(III) Coordination Polymers Based on 2-Amino-4-methylthiazole, 2-Mercaptobenzothiazole and Aromatic Polycarboxylate
Corresponding Author(s) : Maged S. Al-Fakeh
Asian Journal of Chemistry,
Vol. 32 No. 10 (2020): Vol 32 Issue 10
Abstract
Two of coordination polymers of the general formula [Fe(BDC)(AMTZ)Cl]·2H2O and [Fe(BDC)(MBT)Cl]·H2O, BDC = 1,4-benzenedicarboxylic acid, AMTZ = 2-amino-4-methyl-thiazole and MBT = 2-mercaptobenzothiazole, have been synthesized and characterized. Structure of both coordination polymers has been evaluated on the basis of elemental analysis, thermal, FT-IR, UV-vis spectra and the charges been carried by the atoms, caused a dipole moment of 2.4346 debye and total energy -382 × 103 Kcal mol-1. Biological activity of the two synthesized complexes was tested against some fungal and bacterial strains.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.F. Sunday, Arc. Org. Inorg. Chem. Sci., 1, 106 (2018); https://doi.org/10.32474/AOICS.2018.01.000106
- S. Kitagawa, R. Kitaura and S.I. Noro, Angew. Chem. Int. Ed., 43, 2334 (2004); https://doi.org/10.1002/anie.200300610
- J.L. Rowsell and O.M. Yaghi, Micropor. Mesopor. Mater., 73, 3 (2004); https://doi.org/10.1016/j.micromeso.2004.03.034
- A.K. Cheetham, C.N. Rao and R.K. Feller, Chem. Commun., 4780 (2006); https://doi.org/10.1039/B610264F
- D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe and O.M. Yaghi, Chem. Soc. Rev., 38, 1257 (2009); https://doi.org/10.1039/b817735j
- S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. Paik Suh and J. Reedijk, Pure Appl. Chem., 85, 1715 (2013); https://doi.org/10.1351/PAC-REC-12-11-20
- M. O’Keeffe, Chem. Soc. Rev., 38, 1215 (2009); https://doi.org/10.1039/b802802h
- M. Wen, M. Munakata, Y. Suenaga, T. Kuroda-Sowa, M. Maekawa and S.G. Yan, Inorg. Chim. Acta, 322, 133 (2001); https://doi.org/10.1016/S0020-1693(01)00556-4
- J.D. Lin, J.W. Cheng and S.W. Du, Cryst. Growth Des., 8, 3345 (2008); https://doi.org/10.1021/cg8002614
- O. Fabelo, J. Pasán, L. Cañadillas-Delgado, F.S. Delgado, A. Labrador, F. Lloret, M. Julve and C. Ruiz-Pérez, Cryst. Growth Des., 8, 3984 (2008); https://doi.org/10.1021/cg800067k
- A.A. Aly, Turk. J. Chem., 36, 69 (2012).
- N. Agarwal, S. Kumar, A.K. Srivastava and P.C. Sarkar, Indian J. Heterocycl. Chem., 6, 291 (1997).
- J. Sherine, A. Upadhyay, A. Mishra, D. Kumar, S. Pal and S. Harinipriya, Sci. Rep., 9, 621 (2019); https://doi.org/10.1038/s41598-018-36801-6
- X. Chen, L. Ji, Y. Zhou and K. Wu, Sci. Rep., 6, 26044 (2016); https://doi.org/10.1038/srep26044
- D. Yu, J. Wang, W. Hu and R. Guo, Mater. Des., 129, 103 (2017); https://doi.org/10.1016/j.matdes.2017.05.033
- S. Chahine, C. Livingstone and J. Davis, Chem. Commun., 592 (2007); https://doi.org/10.1039/B612092J
- Y. Mori, H. Yokoi and Y. Fujise, Polym. J., 27, 271 (1995); https://doi.org/10.1295/polymj.27.271
- J.K. Mwaura, M.K. Mathai, C. Chena and F. Papadimitrakopoulosa, J. Macromol. Sci. A Pure Appl. Chem., 40, 1253 (2006); https://doi.org/10.1081/MA-120025305
- H. Furukawa, J. Kim, N.W. Ockwig, M. O’Keeffe and O.M. Yaghi, J. Am. Chem. Soc., 130, 11650 (2008); https://doi.org/10.1021/ja803783c
- A.A. Aly, M.A. Ghandour, B.M. Abu-Zied and M.S. Al-Fakeh, J. Environ. Anal. Toxicol., 2, 2 (2012); https://doi.org/10.4172/2161-0525.1000129
- E. Biemmi, T. Bein and N. Stock, Solid State Sci., 8, 363 (2006); https://doi.org/10.1016/j.solidstatesciences.2006.02.025
- R.C. Maurya, R. Verma and T. Singh, Synth. React. Inorg. Met.-Org. Chem., 33, 309 (2003); https://doi.org/10.1081/SIM-120017789
- T.H. Rakha, Synth. React. Inorg. Met.-Org. Chem., 30, 205 (2000); https://doi.org/10.1080/00945710009351758
- K.N. Kouroulis, S.K. Hadjikakou, N. Kourkoumelis, M. Kubicki, L. Male, M. Hursthouse, S. Skoulika, A.K. Metsios, V.Y. Tyurin, A.V. Dolganov, E.R. Milaeva and N. Hadjiliadis, Dalton Trans., 10446 (2009); https://doi.org/10.1039/b909587j
- M. Scarpellini, A. Neves, A.J. Bortoluzzi, I. Vencato, V. Drago, W.A. Ortiz and C. Zucco, J. Chem. Soc., Dalton Trans., 2616 (2001); https://doi.org/10.1039/b100913n
- L. Westerheide, F.K. Müller, R. Than, B. Krebs, J. Dietrich and S. Schindler, Inorg. Chem., 40, 1951 (2001); https://doi.org/10.1021/ic0009371
- J.M. Rowland, M. Olmstead and P.K. Mascharak, Inorg. Chem., 40, 2810 (2001); https://doi.org/10.1021/ic001127s
References
N.F. Sunday, Arc. Org. Inorg. Chem. Sci., 1, 106 (2018); https://doi.org/10.32474/AOICS.2018.01.000106
S. Kitagawa, R. Kitaura and S.I. Noro, Angew. Chem. Int. Ed., 43, 2334 (2004); https://doi.org/10.1002/anie.200300610
J.L. Rowsell and O.M. Yaghi, Micropor. Mesopor. Mater., 73, 3 (2004); https://doi.org/10.1016/j.micromeso.2004.03.034
A.K. Cheetham, C.N. Rao and R.K. Feller, Chem. Commun., 4780 (2006); https://doi.org/10.1039/B610264F
D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe and O.M. Yaghi, Chem. Soc. Rev., 38, 1257 (2009); https://doi.org/10.1039/b817735j
S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. Paik Suh and J. Reedijk, Pure Appl. Chem., 85, 1715 (2013); https://doi.org/10.1351/PAC-REC-12-11-20
M. O’Keeffe, Chem. Soc. Rev., 38, 1215 (2009); https://doi.org/10.1039/b802802h
M. Wen, M. Munakata, Y. Suenaga, T. Kuroda-Sowa, M. Maekawa and S.G. Yan, Inorg. Chim. Acta, 322, 133 (2001); https://doi.org/10.1016/S0020-1693(01)00556-4
J.D. Lin, J.W. Cheng and S.W. Du, Cryst. Growth Des., 8, 3345 (2008); https://doi.org/10.1021/cg8002614
O. Fabelo, J. Pasán, L. Cañadillas-Delgado, F.S. Delgado, A. Labrador, F. Lloret, M. Julve and C. Ruiz-Pérez, Cryst. Growth Des., 8, 3984 (2008); https://doi.org/10.1021/cg800067k
A.A. Aly, Turk. J. Chem., 36, 69 (2012).
N. Agarwal, S. Kumar, A.K. Srivastava and P.C. Sarkar, Indian J. Heterocycl. Chem., 6, 291 (1997).
J. Sherine, A. Upadhyay, A. Mishra, D. Kumar, S. Pal and S. Harinipriya, Sci. Rep., 9, 621 (2019); https://doi.org/10.1038/s41598-018-36801-6
X. Chen, L. Ji, Y. Zhou and K. Wu, Sci. Rep., 6, 26044 (2016); https://doi.org/10.1038/srep26044
D. Yu, J. Wang, W. Hu and R. Guo, Mater. Des., 129, 103 (2017); https://doi.org/10.1016/j.matdes.2017.05.033
S. Chahine, C. Livingstone and J. Davis, Chem. Commun., 592 (2007); https://doi.org/10.1039/B612092J
Y. Mori, H. Yokoi and Y. Fujise, Polym. J., 27, 271 (1995); https://doi.org/10.1295/polymj.27.271
J.K. Mwaura, M.K. Mathai, C. Chena and F. Papadimitrakopoulosa, J. Macromol. Sci. A Pure Appl. Chem., 40, 1253 (2006); https://doi.org/10.1081/MA-120025305
H. Furukawa, J. Kim, N.W. Ockwig, M. O’Keeffe and O.M. Yaghi, J. Am. Chem. Soc., 130, 11650 (2008); https://doi.org/10.1021/ja803783c
A.A. Aly, M.A. Ghandour, B.M. Abu-Zied and M.S. Al-Fakeh, J. Environ. Anal. Toxicol., 2, 2 (2012); https://doi.org/10.4172/2161-0525.1000129
E. Biemmi, T. Bein and N. Stock, Solid State Sci., 8, 363 (2006); https://doi.org/10.1016/j.solidstatesciences.2006.02.025
R.C. Maurya, R. Verma and T. Singh, Synth. React. Inorg. Met.-Org. Chem., 33, 309 (2003); https://doi.org/10.1081/SIM-120017789
T.H. Rakha, Synth. React. Inorg. Met.-Org. Chem., 30, 205 (2000); https://doi.org/10.1080/00945710009351758
K.N. Kouroulis, S.K. Hadjikakou, N. Kourkoumelis, M. Kubicki, L. Male, M. Hursthouse, S. Skoulika, A.K. Metsios, V.Y. Tyurin, A.V. Dolganov, E.R. Milaeva and N. Hadjiliadis, Dalton Trans., 10446 (2009); https://doi.org/10.1039/b909587j
M. Scarpellini, A. Neves, A.J. Bortoluzzi, I. Vencato, V. Drago, W.A. Ortiz and C. Zucco, J. Chem. Soc., Dalton Trans., 2616 (2001); https://doi.org/10.1039/b100913n
L. Westerheide, F.K. Müller, R. Than, B. Krebs, J. Dietrich and S. Schindler, Inorg. Chem., 40, 1951 (2001); https://doi.org/10.1021/ic0009371
J.M. Rowland, M. Olmstead and P.K. Mascharak, Inorg. Chem., 40, 2810 (2001); https://doi.org/10.1021/ic001127s