Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cellulose Micro/Nanofibres of Merbau (Intsia bijuga) Waste: Effects of Chemical Treatments on Structural and Morphology Features
Corresponding Author(s) : Nur Amira Mamat Razali
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
Cellulosic material derived from Merbau (Intsia bijuga) was isolated at atmospheric pressure. In the first stage, the samples were delignified using peroxyacetic acid to remove the amorphous structure. In the second stage, the samples were double-bleached using hydrogen peroxide and sodium hydroxide. The morphology of the cellulose samples was compared. From the X-ray diffraction (XRD) data, it is evident that both acid and alkali bleached celluloses have rich cellulose I structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.D. Mohieldin, E.S. Zainudin, M.T. Paridah and Z.M. Ainun, Key Eng. Mater., 471-472, 251 (2011); https://doi.org/10.4028/www.scientific.net/KEM.471-472.251.
- N. Azraaie, N.A.M.Z. Abidin, N.A. Ibrahim, N.A.M. Razali, F.A. Aziz and S. Radiman, Adv. Mater. Res., 865, 174 (2014); https://doi.org/10.4028/www.scientific.net/AMR.895.174.
- N.A.M.Z. Abidin, F.A. Aziz, R. Shahidan, N. Azraaie, N.A.M. Razali and N.A. Ibrahim, Adv. Mater. Res., 895, 134 (2014); https://doi.org/10.4028/www.scientific.net/AMR.895.134.
- N.A. Ibrahim, N. Azraaie, N.A.M.Z. Abidin, N.A.M. Razali, F.A. Aziz and S. Zakaria, Adv. Mater. Res., 895, 147 (2014); https://doi.org/10.4028/www.scientific.net/AMR.895.147.
- C.W. Kim, D.S. Kim, S.Y. Kang, M. Marquez and Y.L. Joo, Polymer, 47, 5097 (2006); https://doi.org/10.1016/j.polymer.2006.05.033.
- N. Soykeabkaew, Ph.D. Thesis, All-Cellulose Composites, University of London, London (2007).
- S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi,A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund and T. Peijs, J. Mater. Sci., 45, 1 (2010); https://doi.org/10.1007/s10853-009-3874-0.
- B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, A.L. Leao, S.F. de Souza and M. Kottaisamy, Bioresour. Technol., 102, 1988 (2011); https://doi.org/10.1016/j.biortech.2010.09.030.
- T.H. Wegner and P.E. Jones, Cellulose, 13, 115 (2006); https://doi.org/10.1007/s10570-006-9056-1.
- M.T. Postek, A. Vladar, J. Dagata, N. Farkas, B. Ming, R. Sabo and J. Beecher, Proc. SPIE, 7042, pp. D–1–D–11 (2008); https://doi.org/10.1117/12.797575.
- L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033.
- M. Cheng, W. Chen and T. Weerasooriya, J. Eng. Mater. Technol., 127, 197 (2005); https://doi.org/10.1115/1.1857937.
- S.Y. Cho, Y. Choi, D. Park, S. Heo, D.H. Kim and H.J. Jin, Cellulose Nanocrystals with High Termal Stability and their nanocomposites with Poly (Lactic Acid), 18th International Conference on Composite Materials, Jeju Island, Korea (2011).
- I. Siró and D. Plackett, Cellulose, 17, 459 (2010); https://doi.org/10.1007/s10570-010-9405-y.
- S. Joseph, M.S. Sreekala, Z. Oommen, P. Koshy and S. Thomas, Compos. Sci. Technol., 62, 1857 (2002); https://doi.org/10.1016/S0266-3538(02)00098-2.
- F.A. Aziz,A. Ismail, W.M.Z. Wan Yunus, N. Mohamad Nor, R.M. Sohaimi, A.Z. Sulaiman, N.A. Halim, D.D.I. Daruis, N. Azraaie, N.A.M. Zainul Abidin, N.A. Ibrahim and N.A.M. Razali, Mater. Sci. Forum, 846, 434 (2016); https://doi.org/10.4028/www.scientific.net/MSF.846.434.
- L. Donaldson, Wood Sci. Technol., 41, 443 (2007); https://doi.org/10.1007/s00226-006-0121-6.
- L. Segal, J. Creely, A. Martin Jr. and C. Conrad, Text. Res. J., 29, 786 (1959); https://doi.org/10.1177/004051755902901003.
- A.E. Oudiani, Y. Chaabouni, S. Msahli and F. Sakli, Carbohydr. Polym., 86, 1221 (2011); https://doi.org/10.1016/j.carbpol.2011.06.037.
- M. Mohkami and M. Talaeipour, BioResources, 6, 1988 (2011).
- Y. Wang, P.D. Thesis, Cellulose Fibre Dissolution in Sodium Hydroxide Solution at Low Temperature: Dissolution Kinetics and Solubility Improvement, Georgia Institute of Technology, Ann Arbor, USA (2008).
- C.E. Crowder and T. Fawcett, Diffraction, Non-Crystallinity and the PDF Database from ICDD (2009).
References
S.D. Mohieldin, E.S. Zainudin, M.T. Paridah and Z.M. Ainun, Key Eng. Mater., 471-472, 251 (2011); https://doi.org/10.4028/www.scientific.net/KEM.471-472.251.
N. Azraaie, N.A.M.Z. Abidin, N.A. Ibrahim, N.A.M. Razali, F.A. Aziz and S. Radiman, Adv. Mater. Res., 865, 174 (2014); https://doi.org/10.4028/www.scientific.net/AMR.895.174.
N.A.M.Z. Abidin, F.A. Aziz, R. Shahidan, N. Azraaie, N.A.M. Razali and N.A. Ibrahim, Adv. Mater. Res., 895, 134 (2014); https://doi.org/10.4028/www.scientific.net/AMR.895.134.
N.A. Ibrahim, N. Azraaie, N.A.M.Z. Abidin, N.A.M. Razali, F.A. Aziz and S. Zakaria, Adv. Mater. Res., 895, 147 (2014); https://doi.org/10.4028/www.scientific.net/AMR.895.147.
C.W. Kim, D.S. Kim, S.Y. Kang, M. Marquez and Y.L. Joo, Polymer, 47, 5097 (2006); https://doi.org/10.1016/j.polymer.2006.05.033.
N. Soykeabkaew, Ph.D. Thesis, All-Cellulose Composites, University of London, London (2007).
S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi,A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund and T. Peijs, J. Mater. Sci., 45, 1 (2010); https://doi.org/10.1007/s10853-009-3874-0.
B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, A.L. Leao, S.F. de Souza and M. Kottaisamy, Bioresour. Technol., 102, 1988 (2011); https://doi.org/10.1016/j.biortech.2010.09.030.
T.H. Wegner and P.E. Jones, Cellulose, 13, 115 (2006); https://doi.org/10.1007/s10570-006-9056-1.
M.T. Postek, A. Vladar, J. Dagata, N. Farkas, B. Ming, R. Sabo and J. Beecher, Proc. SPIE, 7042, pp. D–1–D–11 (2008); https://doi.org/10.1117/12.797575.
L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033.
M. Cheng, W. Chen and T. Weerasooriya, J. Eng. Mater. Technol., 127, 197 (2005); https://doi.org/10.1115/1.1857937.
S.Y. Cho, Y. Choi, D. Park, S. Heo, D.H. Kim and H.J. Jin, Cellulose Nanocrystals with High Termal Stability and their nanocomposites with Poly (Lactic Acid), 18th International Conference on Composite Materials, Jeju Island, Korea (2011).
I. Siró and D. Plackett, Cellulose, 17, 459 (2010); https://doi.org/10.1007/s10570-010-9405-y.
S. Joseph, M.S. Sreekala, Z. Oommen, P. Koshy and S. Thomas, Compos. Sci. Technol., 62, 1857 (2002); https://doi.org/10.1016/S0266-3538(02)00098-2.
F.A. Aziz,A. Ismail, W.M.Z. Wan Yunus, N. Mohamad Nor, R.M. Sohaimi, A.Z. Sulaiman, N.A. Halim, D.D.I. Daruis, N. Azraaie, N.A.M. Zainul Abidin, N.A. Ibrahim and N.A.M. Razali, Mater. Sci. Forum, 846, 434 (2016); https://doi.org/10.4028/www.scientific.net/MSF.846.434.
L. Donaldson, Wood Sci. Technol., 41, 443 (2007); https://doi.org/10.1007/s00226-006-0121-6.
L. Segal, J. Creely, A. Martin Jr. and C. Conrad, Text. Res. J., 29, 786 (1959); https://doi.org/10.1177/004051755902901003.
A.E. Oudiani, Y. Chaabouni, S. Msahli and F. Sakli, Carbohydr. Polym., 86, 1221 (2011); https://doi.org/10.1016/j.carbpol.2011.06.037.
M. Mohkami and M. Talaeipour, BioResources, 6, 1988 (2011).
Y. Wang, P.D. Thesis, Cellulose Fibre Dissolution in Sodium Hydroxide Solution at Low Temperature: Dissolution Kinetics and Solubility Improvement, Georgia Institute of Technology, Ann Arbor, USA (2008).
C.E. Crowder and T. Fawcett, Diffraction, Non-Crystallinity and the PDF Database from ICDD (2009).