Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antimicrobial and Antioxidant Activities of Diorganotin(IV) Complexes Synthesized from 1,2,4-Triazole Derivatives
Corresponding Author(s) : Jai Devi
Asian Journal of Chemistry,
Vol. 32 No. 10 (2020): Vol 32 Issue 10
Abstract
Novel diorganotin(IV) complexes were synthesized from 1,2,4-triazole Schiff base ligands which were synthesized by reaction between the 4-amino-5-phenyl-1,2,4-triazole-3-thiol and salicyaldehyde derivatives. The bonding and geometry of the diorganotin(IV) complexes were evaluated by using different spectroscopic techniques such as FT-IR, mass, 1H, 13C & 119Sn NMR. The different spectroscopic techniques revealed the tridentate (ONS) mode of chelation of Schiff base ligands and pentacoordinated environment around the central tin metal which was satisfied with azomethine nitrogen, phenolic oxygen, thiolic sulfur and metal-carbon bond of alkyl/aryl group. The Schiff base ligands and their organotin(IV) complexes were tested for their in vitro antimicrobial and antioxidant activities to examine the biological outline of complexes in comparison to standard drugs. The results of activities data revealed that diorganotin(IV) complexes are more active than Schiff base ligands and some diorganotin(IV) complexes are even more active than the standard drugs. In all the synthesized complexes, compound 9 (Bu2SnL2) and 10 (Ph2SnL2) were most potent and can be used in future clinical trials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Dhanda, P. Sarkar, S. Samaddar and J. Haldar, J. Med. Chem., 62, 3184 (2019); https://doi.org/10.1021/acs.jmedchem.8b01093
- Z. Xu, S.J. Zhao, Z.S. Lv, F. Gao, Y.L. Wang, F. Zhang, L.Y. Bai and J.L. Deng, Eur. J. Med. Chem., 162, 396 (2019); https://doi.org/10.1016/j.ejmech.2018.11.032
- A. Chaudhary, M. Agarwal and R.V. Singh, Appl. Organomet. Chem., 20, 295 (2006); https://doi.org/10.1002/aoc.1037
- M. Gielen, Appl. Organomet. Chem., 16, 481 (2002); https://doi.org/10.1002/aoc.331
- R. Joshi, A. Kumari, K. Singh, H. Mishra and S. Pokharia, J. Mol. Struct., 1197, 519 (2019); https://doi.org/10.1016/j.molstruc.2019.07.066
- J. Devi and J. Yadav, Anticancer. Agents Med. Chem., 18, 335 (2018); https://doi.org/10.2174/1871520617666171106125114
- J. Devi, S. Devi and A. Kumar, Heteroatom Chem., 27, 361 (2016); https://doi.org/10.1002/hc.21347
- J. Devi, S. Devi, J. Yadav and A. Kumar, ChemistrySelect, 4, 4512 (2019); https://doi.org/10.1002/slct.201900317
- J. Devi, S. Devi and A. Kumar, MedChemComm, 7, 932 (2016); https://doi.org/10.1039/C5MD00554J
- J. Devi and S. Pachwania, Inorg. Chem. Commun., 91, 44 (2018); https://doi.org/10.1016/j.inoche.2018.03.012
- M. Hanif and Z.H. Chohan, Appl. Organomet. Chem., 27, 36 (2013); https://doi.org/10.1002/aoc.2936
- T.W. Garner, G. Garcia, B. Carroll and M.C. Fisher, Dis. Aquat. Org., 83, 257 (2009); https://doi.org/10.3354/dao02008
- M.D. De Backer, T. Ilyina, X.-J. Ma, S. Vandoninck, W.H.M.L. Luyten and H.V. Bossche, Antimicrob. Agents Chemother., 45, 1660 (2001); https://doi.org/10.1128/AAC.45.6.1660-1670.2001
- S.M. Stahl, CNS Spectr., 13, 1027 (2008); https://doi.org/10.1017/S1092852900017089
- J. Devi, M. Yadav, A. Kumar and A. Kumar, Chem. Pap., 72, 2479 (2018); https://doi.org/10.1007/s11696-018-0480-0
- A.I. Vogel, Text book of Quantitative Chemical Analysis, Longmans, Edison: Wesley, London, edn 5 (1999).
- J. Devi, M. Yadav, D. Kumar, L.S. Naik and D.K. Jindal, J. Appl. Organomet. Chem., 33, e4693 (2019); https://doi.org/10.1002/aoc.4693
- J. Devi, J. Yadav and N. Singh, Res. Chem. Intermed., 45, 3943 (2019); https://doi.org/10.1007/s11164-019-03830-3
- G. Singh, P.A. Singh, K. Singh, D.P. Singh, R.N. Handa and S.N. Dubey, Proc. Natl. Acad. Sci. Ind., 72A, 87 (2002).
- A.D. Kulkarni, S.A. Patil, V.H. Naik and P.S. Badami, Med. Chem. Res., 20, 346 (2011); https://doi.org/10.1007/s00044-010-9327-0
- K. Singh, Dharmpal and V. Parkash, Phosphorus Sulfur Silicon Rel. Elem., 183, 2784 (2008); https://doi.org/10.1080/10426500802013577
- F.T. Vieira, G.M. de Lima, J.R.S. Maia, N.L. Speziali, J.D. Ardisson, L. Rodrigues, A. Correa and O.B. Romero, Eur. J. Med. Chem., 45, 883 (2010); https://doi.org/10.1016/j.ejmech.2009.11.026
- P. Chaudhary, M. Swami, D. Sharma and R. Singh, Appl. Organomet. Chem., 23, 140 (2009); https://doi.org/10.1002/aoc.1484
- J. Devi, J. Yadav, D. Kumar, D.K. Jindal and B. Basu, Appl. Organomet. Chem. (2020); https://doi.org/10.1002/aoc.5815
References
G. Dhanda, P. Sarkar, S. Samaddar and J. Haldar, J. Med. Chem., 62, 3184 (2019); https://doi.org/10.1021/acs.jmedchem.8b01093
Z. Xu, S.J. Zhao, Z.S. Lv, F. Gao, Y.L. Wang, F. Zhang, L.Y. Bai and J.L. Deng, Eur. J. Med. Chem., 162, 396 (2019); https://doi.org/10.1016/j.ejmech.2018.11.032
A. Chaudhary, M. Agarwal and R.V. Singh, Appl. Organomet. Chem., 20, 295 (2006); https://doi.org/10.1002/aoc.1037
M. Gielen, Appl. Organomet. Chem., 16, 481 (2002); https://doi.org/10.1002/aoc.331
R. Joshi, A. Kumari, K. Singh, H. Mishra and S. Pokharia, J. Mol. Struct., 1197, 519 (2019); https://doi.org/10.1016/j.molstruc.2019.07.066
J. Devi and J. Yadav, Anticancer. Agents Med. Chem., 18, 335 (2018); https://doi.org/10.2174/1871520617666171106125114
J. Devi, S. Devi and A. Kumar, Heteroatom Chem., 27, 361 (2016); https://doi.org/10.1002/hc.21347
J. Devi, S. Devi, J. Yadav and A. Kumar, ChemistrySelect, 4, 4512 (2019); https://doi.org/10.1002/slct.201900317
J. Devi, S. Devi and A. Kumar, MedChemComm, 7, 932 (2016); https://doi.org/10.1039/C5MD00554J
J. Devi and S. Pachwania, Inorg. Chem. Commun., 91, 44 (2018); https://doi.org/10.1016/j.inoche.2018.03.012
M. Hanif and Z.H. Chohan, Appl. Organomet. Chem., 27, 36 (2013); https://doi.org/10.1002/aoc.2936
T.W. Garner, G. Garcia, B. Carroll and M.C. Fisher, Dis. Aquat. Org., 83, 257 (2009); https://doi.org/10.3354/dao02008
M.D. De Backer, T. Ilyina, X.-J. Ma, S. Vandoninck, W.H.M.L. Luyten and H.V. Bossche, Antimicrob. Agents Chemother., 45, 1660 (2001); https://doi.org/10.1128/AAC.45.6.1660-1670.2001
S.M. Stahl, CNS Spectr., 13, 1027 (2008); https://doi.org/10.1017/S1092852900017089
J. Devi, M. Yadav, A. Kumar and A. Kumar, Chem. Pap., 72, 2479 (2018); https://doi.org/10.1007/s11696-018-0480-0
A.I. Vogel, Text book of Quantitative Chemical Analysis, Longmans, Edison: Wesley, London, edn 5 (1999).
J. Devi, M. Yadav, D. Kumar, L.S. Naik and D.K. Jindal, J. Appl. Organomet. Chem., 33, e4693 (2019); https://doi.org/10.1002/aoc.4693
J. Devi, J. Yadav and N. Singh, Res. Chem. Intermed., 45, 3943 (2019); https://doi.org/10.1007/s11164-019-03830-3
G. Singh, P.A. Singh, K. Singh, D.P. Singh, R.N. Handa and S.N. Dubey, Proc. Natl. Acad. Sci. Ind., 72A, 87 (2002).
A.D. Kulkarni, S.A. Patil, V.H. Naik and P.S. Badami, Med. Chem. Res., 20, 346 (2011); https://doi.org/10.1007/s00044-010-9327-0
K. Singh, Dharmpal and V. Parkash, Phosphorus Sulfur Silicon Rel. Elem., 183, 2784 (2008); https://doi.org/10.1080/10426500802013577
F.T. Vieira, G.M. de Lima, J.R.S. Maia, N.L. Speziali, J.D. Ardisson, L. Rodrigues, A. Correa and O.B. Romero, Eur. J. Med. Chem., 45, 883 (2010); https://doi.org/10.1016/j.ejmech.2009.11.026
P. Chaudhary, M. Swami, D. Sharma and R. Singh, Appl. Organomet. Chem., 23, 140 (2009); https://doi.org/10.1002/aoc.1484
J. Devi, J. Yadav, D. Kumar, D.K. Jindal and B. Basu, Appl. Organomet. Chem. (2020); https://doi.org/10.1002/aoc.5815