Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Density Functional Theory Calculation of Molecular Descriptors for Simple Coumarins in Gas and Different Solvents
Corresponding Author(s) : Mannam Subbarao
Asian Journal of Chemistry,
Vol. 32 No. 10 (2020): Vol 32 Issue 10
Abstract
The primary aim of this study is to show the importance of molecular structure analysis of pharmaceutical active coumarins compounds using quantum chemistry methods based on density functional theory. To explore the theoretical calculations for global descriptors, the standard Gaussian 09W program was used for coumarins compounds. The full geometry optimization was carried out by the B3LYP/6-311G level of theory. The octanol-water and air-water partition coefficients were also estimated using functional density theory. The order of the HOMO-LUMO energy gap for studied coumarins in the gas phase is umbelliferone (UBA) < (herniarin) HNR ~ (crenulatin) CNT < (scopoletin) SCT < (scoparone) SCO < (isoscopoletin) IST < (4-methylesculetin) MST < (umbelliferone-2-carboxylic acid) UCA < (isofraxidin) IFD < (fraxetin) FXT < (aesculetine) ACT < (dapnetine) DPT. Therefore, UBA molecule in gas phase is less stable. Compared to the measured index of electrophilicity (DE). The MST molecule is stronger, more reactive, nucleophile electrophile at the gas phase and in solvents. In all solvent phases, CNT and UCA molecules have lower values, which mean they are strong nucleophiles. From the log P values of ACT and MST coumarins are in between 1.35-1.8, so ACT and MST coumarins use oral and intestinal absorptions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.N. Venugopala, V. Rashmi and B. Odhav, BioMed Res. Int., 2013, 1 (2013); https://doi.org/10.1155/2013/963248
- R. Bruni, D. Barreca, M. Protti, V. Brighenti, L. Righetti, L. Anceschi, L. Mercolini, S. Benvenuti, G. Gattuso and F. Pellati, Molecules, 24, 2163 (2019); https://doi.org/10.3390/molecules24112163
- A. Stefanachi, F. Leonetti, L. Pisani, M. Catto and A. Carotti, Molecules. 23, 250 (2018); https://doi.org/10.3390/molecules23020250
- M.J. Matos, S. Vazquez-Rodriguez, L. Santana, E. Uriarte, C. FuentesEdfuf, Y. Santos and A. Muñoz-Crego, Med. Chem., 8, 1140 (2012); https://doi.org/10.2174/157340612804075205
- H.M. Alshibl, E.S. Al-Abdullah and H.M. Alkahtani, Curr. Bioactive Comp., 16, 837 (2020); https://doi.org/10.2174/1573407215666190524101510
- M. Tasior, D. Kim, S. Singh, M. Krzeszewski, K.H. Ahn and D.T. Gryko, J. Mater. Chem. C, 3, 1421 (2015); https://doi.org/10.1039/C4TC02665A
- A. Fais, M. Corda, B. Era, M.B. Fadda, M.J. Matos, E. Quezada q, L. Santana, C. Picciau, G. Podda and G. Delogu, Molecules, 14, 2514 (2009); https://doi.org/10.3390/molecules14072514
- M.J. Matos, S. Vazquez-Rodriguez, L. Santana, E. Uriarte, C. FuentesEdfuf, Y. Santos and A. Muñoz-Crego, Molecules, 18, 1394 (2013); https://doi.org/10.3390/molecules18021394
- A. Stefanachi, F. Leonetti, L. Pisani, M. Catto and A. Carotti, Molecules, 23, 250 (2018); https://doi.org/10.3390/molecules23020250
- G.B. Bubols, D.R. Vianna, A. Medina-Remon, G. von Poser, R.M. Lamuela-Raventos and V.L. Eifler- Lima and S.C. Garcia. Mini Rev. Med. Chem., 13, 318 (2013); https://doi.org/10.2174/1389557511313030002
- M. Joao Matos, D. Vina, S. Vazquez-Rodriguez, E. Uriarte and L. Santana, Curr. Top. Med. Chem., 12, 2210 (2012); https://doi.org/10.2174/156802612805220002
- S. Kapoor, Cytotechnology, 65, 787 (2013); https://doi.org/10.1007/s10616-013-9538-6
- S. Vazquez-Rodriguez, M.J. Matos, L. Santana, E. Uriarte, F. Borges, S. Kachler and K.-N. Klotz, J. Pharm. Pharmacol., 65, 697 (2013); https://doi.org/10.1111/jphp.12028
- S. Emami and S. Dadashpour, Eu. J. Med. Chem., 102, 611 (2015); https://doi.org/10.1016/j.ejmech.2015.08.033
- Y. Bansal, P. Sethi and G. Bansal, Med. Chem. Res., 22, 3049 (2013); https://doi.org/10.1007/s00044-012-0321-6
- M.J. Matos, L. Santana, E. Uriarte, G. Delogu, M. Corda, M.B. Fadda, B. Era and A. Fais, Bioorg. Med. Chem. Lett., 21, 3342 (2011); https://doi.org/10.1016/j.bmcl.2011.04.012
- Y. Song, Z. Chen and H. Li, Curr. Org. Chem., 16, 2690 (2012); https://doi.org/10.2174/138527212804004544
- D. Cao, Z. Liu, P. Verwilst, S. Koo, P. Jangjili, J.S. Kim and W. Lin, Chem. Rev., 119, 10403 (2019); https://doi.org/10.1021/acs.chemrev.9b00145
- S. Guha, M. Dutta and D. Das, J. Indian Chem. Soc., 89, 1603 (2012).
- A. Beyramabadi and A. Morsali, Int. J. Phys. Sci., 6, 1780 (2011).
- C.A. Mebi, J. Chem. Sci., 123, 727 (2011); https://doi.org/10.1007/s12039-011-0131-2
- M. Monajjemi, M. Sayadian, K. Zare, A.R. Ilkhani and F. Mollaamin, Int. J. Phys. Sci., 6, 4063 (2011).
- A.A.H. Kadhum, A.A. Al-Amiery, M. Shikara and A. Mohamad, Int. J. Phys. Sci., 6, 6692 (2011).
- W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley: VCH (2011).
- R.G. Pearson, Chemical Hardnes: Application from Molecules to Solid, Wiley: VCH (1997).
- S. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar and W. Thiel, Chem. Rev., 110, 949 (2010); https://doi.org/10.1021/cr900121s
- F.M. Siu and C.M. Che, J. Phys. Chem., 110, 12348 (2006); https://doi.org/10.1021/jp064332n
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Revision D.01. Gaussian Inc., Wallingford (2009).
- R. Dennington, T. Keith and J. Millam, GaussView, version 5.0; Semichem, Inc.: Shawnee Mission, KS (2009).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- N. Özdemir, M. Dinçer, A. Çukurovalý and O. Büyükgüngör, J. Mol. Model., 15, 1435 (2009); https://doi.org/10.1007/s00894-009-0509-y
- H. Sklenar and J. Jäger, Int. J. Quantum Chem., 16, 467 (1979); https://doi.org/10.1002/qua.560160306
- K. Tuppurainen, S. Lotjonen, R. Laatikainen, T. Vartiainen, U. Maran, M. Strandberg and T. Tamm, Mutat. Res., 247, 97 (1991); https://doi.org/10.1016/0027-5107(91)90037-O
- I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons: New York (1976).
- C. Hansch, J.P. Björkroth and A. Leo, J. Pharm. Sci., 76, 663 (1987); https://doi.org/10.1002/jps.2600760902
- P. Keen, eds.: B.B. Brodie, J.R. Gillette and H. S. Ackerman, Concepts in Biochemical Pharmacology: Part 1, Springer: Heidelberg, p. 213 (1971).
- L. Shargel, A. Yu and S. Wu-Pong, Applied Biopharmaceutics & Pharmacokinetics, McGraw-Hill Education, New York, edn 6 (2012).
References
K.N. Venugopala, V. Rashmi and B. Odhav, BioMed Res. Int., 2013, 1 (2013); https://doi.org/10.1155/2013/963248
R. Bruni, D. Barreca, M. Protti, V. Brighenti, L. Righetti, L. Anceschi, L. Mercolini, S. Benvenuti, G. Gattuso and F. Pellati, Molecules, 24, 2163 (2019); https://doi.org/10.3390/molecules24112163
A. Stefanachi, F. Leonetti, L. Pisani, M. Catto and A. Carotti, Molecules. 23, 250 (2018); https://doi.org/10.3390/molecules23020250
M.J. Matos, S. Vazquez-Rodriguez, L. Santana, E. Uriarte, C. FuentesEdfuf, Y. Santos and A. Muñoz-Crego, Med. Chem., 8, 1140 (2012); https://doi.org/10.2174/157340612804075205
H.M. Alshibl, E.S. Al-Abdullah and H.M. Alkahtani, Curr. Bioactive Comp., 16, 837 (2020); https://doi.org/10.2174/1573407215666190524101510
M. Tasior, D. Kim, S. Singh, M. Krzeszewski, K.H. Ahn and D.T. Gryko, J. Mater. Chem. C, 3, 1421 (2015); https://doi.org/10.1039/C4TC02665A
A. Fais, M. Corda, B. Era, M.B. Fadda, M.J. Matos, E. Quezada q, L. Santana, C. Picciau, G. Podda and G. Delogu, Molecules, 14, 2514 (2009); https://doi.org/10.3390/molecules14072514
M.J. Matos, S. Vazquez-Rodriguez, L. Santana, E. Uriarte, C. FuentesEdfuf, Y. Santos and A. Muñoz-Crego, Molecules, 18, 1394 (2013); https://doi.org/10.3390/molecules18021394
A. Stefanachi, F. Leonetti, L. Pisani, M. Catto and A. Carotti, Molecules, 23, 250 (2018); https://doi.org/10.3390/molecules23020250
G.B. Bubols, D.R. Vianna, A. Medina-Remon, G. von Poser, R.M. Lamuela-Raventos and V.L. Eifler- Lima and S.C. Garcia. Mini Rev. Med. Chem., 13, 318 (2013); https://doi.org/10.2174/1389557511313030002
M. Joao Matos, D. Vina, S. Vazquez-Rodriguez, E. Uriarte and L. Santana, Curr. Top. Med. Chem., 12, 2210 (2012); https://doi.org/10.2174/156802612805220002
S. Kapoor, Cytotechnology, 65, 787 (2013); https://doi.org/10.1007/s10616-013-9538-6
S. Vazquez-Rodriguez, M.J. Matos, L. Santana, E. Uriarte, F. Borges, S. Kachler and K.-N. Klotz, J. Pharm. Pharmacol., 65, 697 (2013); https://doi.org/10.1111/jphp.12028
S. Emami and S. Dadashpour, Eu. J. Med. Chem., 102, 611 (2015); https://doi.org/10.1016/j.ejmech.2015.08.033
Y. Bansal, P. Sethi and G. Bansal, Med. Chem. Res., 22, 3049 (2013); https://doi.org/10.1007/s00044-012-0321-6
M.J. Matos, L. Santana, E. Uriarte, G. Delogu, M. Corda, M.B. Fadda, B. Era and A. Fais, Bioorg. Med. Chem. Lett., 21, 3342 (2011); https://doi.org/10.1016/j.bmcl.2011.04.012
Y. Song, Z. Chen and H. Li, Curr. Org. Chem., 16, 2690 (2012); https://doi.org/10.2174/138527212804004544
D. Cao, Z. Liu, P. Verwilst, S. Koo, P. Jangjili, J.S. Kim and W. Lin, Chem. Rev., 119, 10403 (2019); https://doi.org/10.1021/acs.chemrev.9b00145
S. Guha, M. Dutta and D. Das, J. Indian Chem. Soc., 89, 1603 (2012).
A. Beyramabadi and A. Morsali, Int. J. Phys. Sci., 6, 1780 (2011).
C.A. Mebi, J. Chem. Sci., 123, 727 (2011); https://doi.org/10.1007/s12039-011-0131-2
M. Monajjemi, M. Sayadian, K. Zare, A.R. Ilkhani and F. Mollaamin, Int. J. Phys. Sci., 6, 4063 (2011).
A.A.H. Kadhum, A.A. Al-Amiery, M. Shikara and A. Mohamad, Int. J. Phys. Sci., 6, 6692 (2011).
W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley: VCH (2011).
R.G. Pearson, Chemical Hardnes: Application from Molecules to Solid, Wiley: VCH (1997).
S. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar and W. Thiel, Chem. Rev., 110, 949 (2010); https://doi.org/10.1021/cr900121s
F.M. Siu and C.M. Che, J. Phys. Chem., 110, 12348 (2006); https://doi.org/10.1021/jp064332n
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Revision D.01. Gaussian Inc., Wallingford (2009).
R. Dennington, T. Keith and J. Millam, GaussView, version 5.0; Semichem, Inc.: Shawnee Mission, KS (2009).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
N. Özdemir, M. Dinçer, A. Çukurovalý and O. Büyükgüngör, J. Mol. Model., 15, 1435 (2009); https://doi.org/10.1007/s00894-009-0509-y
H. Sklenar and J. Jäger, Int. J. Quantum Chem., 16, 467 (1979); https://doi.org/10.1002/qua.560160306
K. Tuppurainen, S. Lotjonen, R. Laatikainen, T. Vartiainen, U. Maran, M. Strandberg and T. Tamm, Mutat. Res., 247, 97 (1991); https://doi.org/10.1016/0027-5107(91)90037-O
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons: New York (1976).
C. Hansch, J.P. Björkroth and A. Leo, J. Pharm. Sci., 76, 663 (1987); https://doi.org/10.1002/jps.2600760902
P. Keen, eds.: B.B. Brodie, J.R. Gillette and H. S. Ackerman, Concepts in Biochemical Pharmacology: Part 1, Springer: Heidelberg, p. 213 (1971).
L. Shargel, A. Yu and S. Wu-Pong, Applied Biopharmaceutics & Pharmacokinetics, McGraw-Hill Education, New York, edn 6 (2012).