Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antibacterial Study of Copper Oxide-Graphene Nanocomposites
Corresponding Author(s) : Harish Kumar
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
A novel facile synthesis of copper oxide and copper-graphene oxide nanocomposites were achieved by modified sol-gel technique for their pharmaceutical and therapeutic use. Spherical, crystalline, defect free CuO nanoparticles with average diameter 20 nm were synthesized by modified sol-gel technique. Reduced graphene oxide (rGO) was synthesized by modified Hummers method. Copper-graphene oxide nanocomposites (CuGONC) were synthesized by in situ method. The crystalline nature, size, shape and dimensions of the nanoparticles, graphene oxide and nanocomposites were studied by X-Ray diffraction method. TEM analysis was carried out to examine the morphology of nanoparticles and nanocomposites. FTIR spectroscopy confirms that the CuO nanoparticles are surrounded by oxygen and silicon atoms. Antibacterial activity of CuO nanoparticles and CuGONC were investigated against gram positive and gram negative bacteria. Zone of Inhibition shown by CuO nanoparticles and CuGONC was found to be higher than six investigated standard antibiotics. Synthesized Copper oxide nanoparticles and nanocomposites can be used as antibacterial agents. This eco-friendly method of synthesis of CuO nanoparticles and CuGONC could be a viable solution for industrial applications and therapeutic needs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- US Department of Health and Human Services, Centers for Disease Control and Prevention, Antibiotic Resistance Threats in the United States, US Centers for Disease Control and Prevention (2013).
- I. Brigger, C. Dubernet and P. Couvreur, Adv. Drug Deliv. Rev., 54, 631 (2002); https://doi.org/10.1016/S0169-409X(02)00044-3.
- F. Forestier, P. Gerrier, C. Chaumanrd, A.-M. Quero, P. Couvreur and C. Labarre, J. Antimicrob. Chemother., 30, 173 (1992); https://doi.org/10.1093/jac/30.2.173.
- L. Joguet, I. Sondi and E. Matijevic, J. Colloid Interface Sci., 251, 284 (2002); https://doi.org/10.1006/jcis.2002.8408.
- M.L. Hans and A.M. Lowman,Curr. Opin. Solid State Mater., 6, 319 (2002); https://doi.org/10.1016/S1359-0286(02)00117-1.
- E. Merisko-Liversidge, G.G. Liversidge and E.R. Cooper, Eur. J. Pharm. Sci., 18, 113 (2003); https://doi.org/10.1016/S0928-0987(02)00251-8.
- O.V. Salata, J. Nanobiotechnol., 2, 3 (2004); https://doi.org/10.1186/1477-3155-2-3.
- I. Sondi, O. Siiman, S. Koester and E. Matijevic, Langmuir, 16, 3107 (2000); https://doi.org/10.1021/la991109r.
- J.L. Li, B. Tang, B. Yuan, L. Sun and X.G. Wang, Biomaterials, 34, 9519 (2013); https://doi.org/10.1016/j.biomaterials.2013.08.066.
- E. Akbari, Z. Buntat, M.J. Kiani, A. Enzevaee and M. Khaledian, Int. J. Environ. Anal. Chem., 95, 847 (2015); https://doi.org/10.1080/03067319.2015.1058930.
- W. Zhu, Z. Li, X. Liu, X. Yan and L. Deng, Anal. Lett., 48, 2870 (2015); https://doi.org/10.1080/00032719.2015.1052974.
- D.S. Spencer, A.S. Puranik and N.A. Peppas, Curr. Opin. Chem. Eng., 7, 84 (2015); https://doi.org/10.1016/j.coche.2014.12.003.
- N. Duran, D.S.T. Martinez, C.P. Silveira, M. Duran,A.C.M. de Moraes, M.B. Simoes, O. Alves and W. Favaro, Curr. Top. Med. Chem., 15, 309 (2015); https://doi.org/10.2174/1568026615666150108144217.
- K. Yang, L. Feng and Z. Liu, Expert Opin. Drug Deliv., 12, 601 (2015); https://doi.org/10.1517/17425247.2015.978760.
- A.F. De Faria, A. C. Mazarin de Moraes and O. L. Alves, eds.: N. Duran, S.S. Guterres and O.L. Alves, Nanomedicine and Nanotechnology, In: Nanotoxicology: Materials, Methodologies and Assessments, Springer, New York, pp. 363-405 (2014).
- X. Wang, Z. Liu, X. Ye, K. Hu, H. Zhong, X. Yuan, H. Xiong and Z. Guo, Chem. Eng. J., 260, 331 (2015); https://doi.org/10.1016/j.cej.2014.08.102.
- F. Ahmed and D.F. Rodrigues, J. Hazard. Mater., 256-257, 33 (2013); https://doi.org/10.1016/j.jhazmat.2013.03.064.
- O. Akhavan and E. Ghaderi, ACS Nano, 4, 5731 (2010); https://doi.org/10.1021/nn101390x.
- J.N. Chen, X.P. Wang and H.Y. Han, J. Nanopart. Res., 15, 1658 (2013); https://doi.org/10.1007/s11051-013-1658-6.
- S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen, ACS Nano, 5, 6971 (2011); https://doi.org/10.1021/nn202451x.
- M. Veerapandian, L.H. Zhang, K. Krishnamoorthy and K. Yun, Nanotechnology, 24, 395706 (2013); https://doi.org/10.1088/0957-4484/24/39/395706.
- P. Sangwan and H. Kumar, Asian J. Pharm. Clin. Res., 10, 1 (2017).
- P. Sangwan, H. Kumar and S.S. Purewal, Int. J. Adv. Tech. Eng. Sci. Eng., 04, 550 (2016).
- H. Kumar and Bhawana, Int. J. Adv. Tech. Eng. Sci. Eng., 5, 751 (2016).
- R. Rani, H. Kumar, R.K. Salar and S.S. Purewal, Int. J. Pharm. Res. Develop., 6, 72 (2014).
- H. Kumar, Manisha and P. Sangwan, Int. J. Chem. Chem. Eng., 3, 155 (2013).
- H. Kumar and R. Rani, Int. J. Eng. Innov. Technol., 3, 344 (2013).
- H. Kumar and R. Rani, Int. Lett. Chem. Phys. Astron., 19, 26 (2013); https://doi.org/10.18052/www.scipress.com/ILCPA.19.26.
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017.
References
US Department of Health and Human Services, Centers for Disease Control and Prevention, Antibiotic Resistance Threats in the United States, US Centers for Disease Control and Prevention (2013).
I. Brigger, C. Dubernet and P. Couvreur, Adv. Drug Deliv. Rev., 54, 631 (2002); https://doi.org/10.1016/S0169-409X(02)00044-3.
F. Forestier, P. Gerrier, C. Chaumanrd, A.-M. Quero, P. Couvreur and C. Labarre, J. Antimicrob. Chemother., 30, 173 (1992); https://doi.org/10.1093/jac/30.2.173.
L. Joguet, I. Sondi and E. Matijevic, J. Colloid Interface Sci., 251, 284 (2002); https://doi.org/10.1006/jcis.2002.8408.
M.L. Hans and A.M. Lowman,Curr. Opin. Solid State Mater., 6, 319 (2002); https://doi.org/10.1016/S1359-0286(02)00117-1.
E. Merisko-Liversidge, G.G. Liversidge and E.R. Cooper, Eur. J. Pharm. Sci., 18, 113 (2003); https://doi.org/10.1016/S0928-0987(02)00251-8.
O.V. Salata, J. Nanobiotechnol., 2, 3 (2004); https://doi.org/10.1186/1477-3155-2-3.
I. Sondi, O. Siiman, S. Koester and E. Matijevic, Langmuir, 16, 3107 (2000); https://doi.org/10.1021/la991109r.
J.L. Li, B. Tang, B. Yuan, L. Sun and X.G. Wang, Biomaterials, 34, 9519 (2013); https://doi.org/10.1016/j.biomaterials.2013.08.066.
E. Akbari, Z. Buntat, M.J. Kiani, A. Enzevaee and M. Khaledian, Int. J. Environ. Anal. Chem., 95, 847 (2015); https://doi.org/10.1080/03067319.2015.1058930.
W. Zhu, Z. Li, X. Liu, X. Yan and L. Deng, Anal. Lett., 48, 2870 (2015); https://doi.org/10.1080/00032719.2015.1052974.
D.S. Spencer, A.S. Puranik and N.A. Peppas, Curr. Opin. Chem. Eng., 7, 84 (2015); https://doi.org/10.1016/j.coche.2014.12.003.
N. Duran, D.S.T. Martinez, C.P. Silveira, M. Duran,A.C.M. de Moraes, M.B. Simoes, O. Alves and W. Favaro, Curr. Top. Med. Chem., 15, 309 (2015); https://doi.org/10.2174/1568026615666150108144217.
K. Yang, L. Feng and Z. Liu, Expert Opin. Drug Deliv., 12, 601 (2015); https://doi.org/10.1517/17425247.2015.978760.
A.F. De Faria, A. C. Mazarin de Moraes and O. L. Alves, eds.: N. Duran, S.S. Guterres and O.L. Alves, Nanomedicine and Nanotechnology, In: Nanotoxicology: Materials, Methodologies and Assessments, Springer, New York, pp. 363-405 (2014).
X. Wang, Z. Liu, X. Ye, K. Hu, H. Zhong, X. Yuan, H. Xiong and Z. Guo, Chem. Eng. J., 260, 331 (2015); https://doi.org/10.1016/j.cej.2014.08.102.
F. Ahmed and D.F. Rodrigues, J. Hazard. Mater., 256-257, 33 (2013); https://doi.org/10.1016/j.jhazmat.2013.03.064.
O. Akhavan and E. Ghaderi, ACS Nano, 4, 5731 (2010); https://doi.org/10.1021/nn101390x.
J.N. Chen, X.P. Wang and H.Y. Han, J. Nanopart. Res., 15, 1658 (2013); https://doi.org/10.1007/s11051-013-1658-6.
S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen, ACS Nano, 5, 6971 (2011); https://doi.org/10.1021/nn202451x.
M. Veerapandian, L.H. Zhang, K. Krishnamoorthy and K. Yun, Nanotechnology, 24, 395706 (2013); https://doi.org/10.1088/0957-4484/24/39/395706.
P. Sangwan and H. Kumar, Asian J. Pharm. Clin. Res., 10, 1 (2017).
P. Sangwan, H. Kumar and S.S. Purewal, Int. J. Adv. Tech. Eng. Sci. Eng., 04, 550 (2016).
H. Kumar and Bhawana, Int. J. Adv. Tech. Eng. Sci. Eng., 5, 751 (2016).
R. Rani, H. Kumar, R.K. Salar and S.S. Purewal, Int. J. Pharm. Res. Develop., 6, 72 (2014).
H. Kumar, Manisha and P. Sangwan, Int. J. Chem. Chem. Eng., 3, 155 (2013).
H. Kumar and R. Rani, Int. J. Eng. Innov. Technol., 3, 344 (2013).
H. Kumar and R. Rani, Int. Lett. Chem. Phys. Astron., 19, 26 (2013); https://doi.org/10.18052/www.scipress.com/ILCPA.19.26.
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017.