Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantitative Evaluation of Macro and Micronutrients in Averrhoa bilimbi, Mimusops elengi and Carissa carandas Fruits of Bangladesh
Corresponding Author(s) : Md. Abdul Mannan
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
In present study, a quantitative evaluation of macro and micronutrients in Averrhoa bilimbi, Mimusops elengi and Carissa carandas tropical fruits have been presented. Concentration of the nutrients namely calcium, chromium, manganese, iron, nickel, zinc and two toxic heavy metals cadmium and lead present in the fruits are used as traditional folk medicines in Bangladesh were determined by flame atomic absorption spectrometric method. The concentration of the elements for Averrhoa bilimbi was found to be followed by the order as: Ca (1.98 ppm) > Fe (0.515) > Zn (0.080) > Mn (0.038) > Cr (0.006) > Pb (0.004) > Ni (0.0016) > and Cd (0.0015 ppm), respectively. The order for that of Mimusops elengi was found to be as: Ca (3.175 ppm) > Fe (0.784) > Zn (0.049) > Mn (0.038) > Pb (0.008) > Ni (0.008) > Cd (0.003) > Cr (0.001 ppm) and the same issue for the Carissa carandas was found to be Ca (4.277 ppm) > Fe (0.676) > Zn (0.040) > Mn (0.040) > Pb (0.005) > Ni (0.004) > Cr (0.002) > Cd (0.0009 ppm), respectively. From the obtained results, the analyzed fruits might be an admirable natural source of nutrients Ca, Fe and Zn. Concentration of toxic elements Pb and Cd found to be of very few ppb levels and should not be considered as toxic in consumption by human beings.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Ganskopp and D. Bohnert, J. Range Manage., 56, 174 (2003); https://doi.org/10.2307/4003902
- K. Chan, Chemosphere, 52, 1361 (2003); https://doi.org/10.1016/S0045-6535(03)00471-5
- P. Jayaraj, Int. J. Green Pharm., 4, 10 (2010); https://doi.org/10.4103/0973-8258.62158
- I.O. Abugassa, A.T. Bashir, K. Doubali, R.H. Etwir, M. Abu-Enawel and S.O. Abugassa, J. Radioanal. Nucl. Chem., 278, 559 (2008); https://doi.org/10.1007/s10967-008-1005-z
- K.A. Kumar, S.K. Gousia, M. Anupama and J.N.L. Latha, Int. J. Pharm. Pharmaceut. Sci. Res., 3, 136 (2013).
- S.N. Joglekar and B.B. Gaitonde, Jpn. J. Pharmacol., 20, 367 (1970); https://doi.org/10.1254/jjp.20.367
- M. Hattori, T. Nakabayashi, Y.A. Lim, H. Miyashiro, M. Kurokawa, K. Shiraki, M.P. Gupta, M. Correa and U. Pilapitiya, Phytother. Res., 9, 270 (1995); https://doi.org/10.1002/ptr.2650090408
- R. Banerji, A.K. Srivastava, G. Misra, S.K. Nigam, S. Singh, S.C. Nigam and R.C. Saxena, Indian Drugs, 17, 6 (1979).
- L.S. Nunes, J.T.P. Barbosa, A.P. Fernandes, V.A. Lemos, W.N.L. Santos, M.G.A. Korn and L.S.G. Teixeira, Food Chem., 127, 780 (2011); https://doi.org/10.1016/j.foodchem.2010.12.147
- V.S. Parmar, A.K. Gupta, H.N. Jha, P.N. Varma and D.R. Lohar, Int. J. Pharmacol., 31, 324 (1993); https://doi.org/10.3109/13880209309082962
- N.J. Miller-Ihli, J. Agric. Food Chem., 44, 2675 (1996); https://doi.org/10.1021/jf950616l
- R. Vatansever, I.I. Ozyigit and E. Filiz, Appl. Biochem. Biotechnol., 181, 464 (2017); https://doi.org/10.1007/s12010-016-2224-3
- P.J. White and P.H. Brown, Ann. Bot., 105, 1073 (2010); https://doi.org/10.1093/aob/mcq085
- I. Lavilla, A.V. Filgueiras and C. Bendicho, J. Agric. Food Chem., 47, 5072 (1999); https://doi.org/10.1021/jf990336w
- A. Dhiman, S. Ahmad and A. Nanda, Toxicol. Int., 18, 163 (2011); https://doi.org/10.4103/0971-6580.84271
- A.M.O. Ajasa, M.O. Bello, A.O. Ibrahim, I.A. Ogunwande and N.O. Olawore, Food Chem., 85, 67 (2004); https://doi.org/10.1016/j.foodchem.2003.06.004
- P.K. Hepler, Plant Cell, 17, 2142 (2005); https://doi.org/10.1105/tpc.105.032508
- H.G. Burstrom, Bio. Rev., 43, 287 (1968); https://doi.org/10.1111/j.1469-185X.1968.tb00962.x
- P.J. White, Ann. Bot., 92, 487 (2003); https://doi.org/10.1093/aob/mcg164
- E.W. Simon, New Phytol., 80, 1 (1978); https://doi.org/10.1111/j.1469-8137.1978.tb02259.x
- R.G.W. Jones and O.R. Lunt, Bot. Rev., 33, 407 (1967); https://doi.org/10.1007/BF02858743
- R.K. Murray, D.K. Granner, P.A. Mayes and V.W. Rodwell, Harper’s Biochemistry, McGraw-Hill, USA, edn 25 (2000).
- A. Lesniewicz, K. Jaworska and W. Zyrnicki, Food Chem., 99, 670 (2006); https://doi.org/10.1016/j.foodchem.2005.08.042
- G.C. Curhan, W.C. Willett, E.B. Rimm and M.J. Stampfer, N. Engl. J.Med., 328, 833 (1993); https://doi.org/10.1056/NEJM199303253281203
- R. Siener, S. Glatz, C. Nicolay and A. Hesse, Eur. Urol., 44, 467 (2003); https://doi.org/10.1016/S0302-2838(03)00317-8
- L. Lind, E. Skarfors, L. Berglund, H. Lithell and S. Ljunghall, J. Clin. Epidemiol., 50, 967 (1997); https://doi.org/10.1016/S0895-4356(97)00104-2
- R.N. Foley, A.J. Collins, A. Ishani and P.A. Kalra, Am. Heart J., 156, 556 (2008); https://doi.org/10.1016/j.ahj.2008.05.016
- I.R. Reid, M.J. Bolland and A. Grey, Clin. Endocrinol., 73, 689 (2010); https://doi.org/10.1111/j.1365-2265.2010.03792.x
- S.L. Tisdale, W.L. Nelson and J.D. Beaten, Zinc In: Soil Fertility and Fertilizers, MacMillan Publishing Company: New York, edn 4 (1984).
- H. Marschner, Mineral Nutrition of Higher Plants, Academic Press: New York, edn 2 (1995).
- I. Cakmak, New Phytol., 146, 185 (2000); https://doi.org/10.1046/j.1469-8137.2000.00630.x
- W.A. Kasim, Int. J. Bot., 3, 15 (2007); https://doi.org/10.3923/ijb.2007.15.22
- K.B. Disante, D. Fuentes and J. Cortina, Seedlings Environ. Exp. Bot., 70, 96 (2011); https://doi.org/10.1016/j.envexpbot.2010.08.008
- A.W. Peck and G.K. McDonald, Plant Soil, 337, 355 (2010); https://doi.org/10.1007/s11104-010-0532-x
- H. Clijsters and F. Van Assche, Photosynth. Res., 7, 31 (1985); https://doi.org/10.1007/BF00032920
- S.M. Macfie and G.J. Taylor, Physiol. Plant., 85, 467 (1992); https://doi.org/10.1111/j.1399-3054.1992.tb05813.x
- WHO, World Health Organization Monographs on Selected Medicinal Plants, vol. 1 (1999).
References
D. Ganskopp and D. Bohnert, J. Range Manage., 56, 174 (2003); https://doi.org/10.2307/4003902
K. Chan, Chemosphere, 52, 1361 (2003); https://doi.org/10.1016/S0045-6535(03)00471-5
P. Jayaraj, Int. J. Green Pharm., 4, 10 (2010); https://doi.org/10.4103/0973-8258.62158
I.O. Abugassa, A.T. Bashir, K. Doubali, R.H. Etwir, M. Abu-Enawel and S.O. Abugassa, J. Radioanal. Nucl. Chem., 278, 559 (2008); https://doi.org/10.1007/s10967-008-1005-z
K.A. Kumar, S.K. Gousia, M. Anupama and J.N.L. Latha, Int. J. Pharm. Pharmaceut. Sci. Res., 3, 136 (2013).
S.N. Joglekar and B.B. Gaitonde, Jpn. J. Pharmacol., 20, 367 (1970); https://doi.org/10.1254/jjp.20.367
M. Hattori, T. Nakabayashi, Y.A. Lim, H. Miyashiro, M. Kurokawa, K. Shiraki, M.P. Gupta, M. Correa and U. Pilapitiya, Phytother. Res., 9, 270 (1995); https://doi.org/10.1002/ptr.2650090408
R. Banerji, A.K. Srivastava, G. Misra, S.K. Nigam, S. Singh, S.C. Nigam and R.C. Saxena, Indian Drugs, 17, 6 (1979).
L.S. Nunes, J.T.P. Barbosa, A.P. Fernandes, V.A. Lemos, W.N.L. Santos, M.G.A. Korn and L.S.G. Teixeira, Food Chem., 127, 780 (2011); https://doi.org/10.1016/j.foodchem.2010.12.147
V.S. Parmar, A.K. Gupta, H.N. Jha, P.N. Varma and D.R. Lohar, Int. J. Pharmacol., 31, 324 (1993); https://doi.org/10.3109/13880209309082962
N.J. Miller-Ihli, J. Agric. Food Chem., 44, 2675 (1996); https://doi.org/10.1021/jf950616l
R. Vatansever, I.I. Ozyigit and E. Filiz, Appl. Biochem. Biotechnol., 181, 464 (2017); https://doi.org/10.1007/s12010-016-2224-3
P.J. White and P.H. Brown, Ann. Bot., 105, 1073 (2010); https://doi.org/10.1093/aob/mcq085
I. Lavilla, A.V. Filgueiras and C. Bendicho, J. Agric. Food Chem., 47, 5072 (1999); https://doi.org/10.1021/jf990336w
A. Dhiman, S. Ahmad and A. Nanda, Toxicol. Int., 18, 163 (2011); https://doi.org/10.4103/0971-6580.84271
A.M.O. Ajasa, M.O. Bello, A.O. Ibrahim, I.A. Ogunwande and N.O. Olawore, Food Chem., 85, 67 (2004); https://doi.org/10.1016/j.foodchem.2003.06.004
P.K. Hepler, Plant Cell, 17, 2142 (2005); https://doi.org/10.1105/tpc.105.032508
H.G. Burstrom, Bio. Rev., 43, 287 (1968); https://doi.org/10.1111/j.1469-185X.1968.tb00962.x
P.J. White, Ann. Bot., 92, 487 (2003); https://doi.org/10.1093/aob/mcg164
E.W. Simon, New Phytol., 80, 1 (1978); https://doi.org/10.1111/j.1469-8137.1978.tb02259.x
R.G.W. Jones and O.R. Lunt, Bot. Rev., 33, 407 (1967); https://doi.org/10.1007/BF02858743
R.K. Murray, D.K. Granner, P.A. Mayes and V.W. Rodwell, Harper’s Biochemistry, McGraw-Hill, USA, edn 25 (2000).
A. Lesniewicz, K. Jaworska and W. Zyrnicki, Food Chem., 99, 670 (2006); https://doi.org/10.1016/j.foodchem.2005.08.042
G.C. Curhan, W.C. Willett, E.B. Rimm and M.J. Stampfer, N. Engl. J.Med., 328, 833 (1993); https://doi.org/10.1056/NEJM199303253281203
R. Siener, S. Glatz, C. Nicolay and A. Hesse, Eur. Urol., 44, 467 (2003); https://doi.org/10.1016/S0302-2838(03)00317-8
L. Lind, E. Skarfors, L. Berglund, H. Lithell and S. Ljunghall, J. Clin. Epidemiol., 50, 967 (1997); https://doi.org/10.1016/S0895-4356(97)00104-2
R.N. Foley, A.J. Collins, A. Ishani and P.A. Kalra, Am. Heart J., 156, 556 (2008); https://doi.org/10.1016/j.ahj.2008.05.016
I.R. Reid, M.J. Bolland and A. Grey, Clin. Endocrinol., 73, 689 (2010); https://doi.org/10.1111/j.1365-2265.2010.03792.x
S.L. Tisdale, W.L. Nelson and J.D. Beaten, Zinc In: Soil Fertility and Fertilizers, MacMillan Publishing Company: New York, edn 4 (1984).
H. Marschner, Mineral Nutrition of Higher Plants, Academic Press: New York, edn 2 (1995).
I. Cakmak, New Phytol., 146, 185 (2000); https://doi.org/10.1046/j.1469-8137.2000.00630.x
W.A. Kasim, Int. J. Bot., 3, 15 (2007); https://doi.org/10.3923/ijb.2007.15.22
K.B. Disante, D. Fuentes and J. Cortina, Seedlings Environ. Exp. Bot., 70, 96 (2011); https://doi.org/10.1016/j.envexpbot.2010.08.008
A.W. Peck and G.K. McDonald, Plant Soil, 337, 355 (2010); https://doi.org/10.1007/s11104-010-0532-x
H. Clijsters and F. Van Assche, Photosynth. Res., 7, 31 (1985); https://doi.org/10.1007/BF00032920
S.M. Macfie and G.J. Taylor, Physiol. Plant., 85, 467 (1992); https://doi.org/10.1111/j.1399-3054.1992.tb05813.x
WHO, World Health Organization Monographs on Selected Medicinal Plants, vol. 1 (1999).