Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Molecular Docking for Antiinflammatory Studies of 2-(Arylmethyl)-1-ethyl-1H-benzo[d]imidazol-5-amines
Corresponding Author(s) : Laxminarayana Eppakayala
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
1-Chloro-2,4-dinitrobenzene (1) was reacted with aliphatic amines (2) in ethanol as solvent under reflux condition for 16-24 h to form N-alkyl-2,4-dinitroaniline (3). Compound 3 undergoes reduction to from N-alkyl-4-nitrobenzene-1,2-diamine (4). Compound 4 was treated with carboxylic acid (5) to offered N-(2-(alkylamino)-5-nitrophenyl)-2-arylacetamide (6) which on cyclization gave 2-(arylmethyl)-1-ethyl-5-nitro-1H-benzo[d]imidazole (7). Finally, compound 7 undergoes reduction give 2-(arylmethyl)-1-ethyl-1H-benzo[d]imidazol-5-amine (8). The synthesized compounds were characterized by using spectral analyses. The compounds synthesized were confirmed by spectral analyses. Molecular docking of 5COX with the ligand using docking server, predicted the compound to be a potential anti-inflammatory compound.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zarrinmayeh,A.M. Nunes, P.L. Ornstein, D.M. Zimmerman, M.B. Arnold, D.A. Schober, S.L. Gackenheimer, R.F. Bruns, P.A. Hipskind, T.C. Britton, B.E. Cantrell and D.R. Gehlert, J. Med. Chem., 41, 2709 (1998); https://doi.org/10.1021/jm9706630.
- M. Hranjec, M. Kralj, I. Piantanida, M. Sedic, L. Suman, K. Pavelic and G. Karminski-Zamola, J. Med. Chem., 50, 5696 (2007); https://doi.org/10.1021/jm070876h.
- M. Hasegawa, N. Nishigaki, Y. Washio, K. Kano, P.A. Harris, H. Sato, I. Mori, R.I. West, M. Shibahara, H. Toyoda, L. Wang, R.T. Nolte, J.M. Veal and M. Cheung, J. Med. Chem., 50, 4453 (2007); https://doi.org/10.1021/jm0611051.
- J. Falco, M. Pique, M. Gonzalez, I. Buira, E. Mendez, J. Terencio, C. Pérez, M. Príncep, A. Palomer and A. Guglietta, Eur. J. Med. Chem., 41, 985 (2006); https://doi.org/10.1016/j.ejmech.2006.03.031.
- A.A. Spasov, I.N. Yozhitsa, L.I. Bugaeva and V.A. Anisimova, Pharm. Chem. J., 33, 232 (1999); https://doi.org/10.1007/BF02510042.
- M.A. Phillips, J. Chem. Soc., 2393 (1928); https://doi.org/10.1039/JR9280002393.
- M.R. Grimmet,A.R. Katritzky and C.W.J. Rees, Heterocyclic Chemistry Oxford, UK, vol. 5. p. 457 (1984).
- A. Czarny, W.D. Wilson and D.W. Boykin, J. Heterocycl. Chem., 33, 1393 (1996); https://doi.org/10.1002/jhet.5570330463.
- R.R. Tidwell, J.D. Geratz, O. Dann, G. Volz, D. Zeh and H. Loewe, J. Med. Chem., 21, 613 (1978); https://doi.org/10.1021/jm00205a005.
- Z. Wu, P. Rea and G. Wickham, Tetrahedron Lett., 41, 9871 (2000); https://doi.org/10.1016/S0040-4039(00)01732-9.
- B.H. Kim, R. Han, J.S. Kim, Y.M. Jun, W. Baik and B.M. Lee, Heterocycles, 62, 41 (2004); https://doi.org/10.3987/COM-03-9903.
- B. Gangadasu, P. Narender, S.B. Kumar, M. Ravinder, B.A. Rao, C. Ramesh, B.C. Raju and V.J. Rao, Tetrahedron, 62, 8398 (2006); https://doi.org/10.1016/j.tet.2006.06.026.
- B.E. Maryanoff, W. Ho, D.F. McComsey, A.B. Reitz, P.P. Grous, S.O. Nortey, R.P. Shank, B. Dubinsky, R.J.J. Taylor and J.F. Gardocki, J. Med. Chem., 38, 16 (1995); https://doi.org/10.1021/jm00001a005.
- H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov and P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235.
- Z. Bikadi, L. Demko and E. Hazai, Arch. Biochem. Biophys., 461, 225 (2007); https://doi.org/10.1016/j.abb.2007.02.020.
References
H. Zarrinmayeh,A.M. Nunes, P.L. Ornstein, D.M. Zimmerman, M.B. Arnold, D.A. Schober, S.L. Gackenheimer, R.F. Bruns, P.A. Hipskind, T.C. Britton, B.E. Cantrell and D.R. Gehlert, J. Med. Chem., 41, 2709 (1998); https://doi.org/10.1021/jm9706630.
M. Hranjec, M. Kralj, I. Piantanida, M. Sedic, L. Suman, K. Pavelic and G. Karminski-Zamola, J. Med. Chem., 50, 5696 (2007); https://doi.org/10.1021/jm070876h.
M. Hasegawa, N. Nishigaki, Y. Washio, K. Kano, P.A. Harris, H. Sato, I. Mori, R.I. West, M. Shibahara, H. Toyoda, L. Wang, R.T. Nolte, J.M. Veal and M. Cheung, J. Med. Chem., 50, 4453 (2007); https://doi.org/10.1021/jm0611051.
J. Falco, M. Pique, M. Gonzalez, I. Buira, E. Mendez, J. Terencio, C. Pérez, M. Príncep, A. Palomer and A. Guglietta, Eur. J. Med. Chem., 41, 985 (2006); https://doi.org/10.1016/j.ejmech.2006.03.031.
A.A. Spasov, I.N. Yozhitsa, L.I. Bugaeva and V.A. Anisimova, Pharm. Chem. J., 33, 232 (1999); https://doi.org/10.1007/BF02510042.
M.A. Phillips, J. Chem. Soc., 2393 (1928); https://doi.org/10.1039/JR9280002393.
M.R. Grimmet,A.R. Katritzky and C.W.J. Rees, Heterocyclic Chemistry Oxford, UK, vol. 5. p. 457 (1984).
A. Czarny, W.D. Wilson and D.W. Boykin, J. Heterocycl. Chem., 33, 1393 (1996); https://doi.org/10.1002/jhet.5570330463.
R.R. Tidwell, J.D. Geratz, O. Dann, G. Volz, D. Zeh and H. Loewe, J. Med. Chem., 21, 613 (1978); https://doi.org/10.1021/jm00205a005.
Z. Wu, P. Rea and G. Wickham, Tetrahedron Lett., 41, 9871 (2000); https://doi.org/10.1016/S0040-4039(00)01732-9.
B.H. Kim, R. Han, J.S. Kim, Y.M. Jun, W. Baik and B.M. Lee, Heterocycles, 62, 41 (2004); https://doi.org/10.3987/COM-03-9903.
B. Gangadasu, P. Narender, S.B. Kumar, M. Ravinder, B.A. Rao, C. Ramesh, B.C. Raju and V.J. Rao, Tetrahedron, 62, 8398 (2006); https://doi.org/10.1016/j.tet.2006.06.026.
B.E. Maryanoff, W. Ho, D.F. McComsey, A.B. Reitz, P.P. Grous, S.O. Nortey, R.P. Shank, B. Dubinsky, R.J.J. Taylor and J.F. Gardocki, J. Med. Chem., 38, 16 (1995); https://doi.org/10.1021/jm00001a005.
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov and P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235.
Z. Bikadi, L. Demko and E. Hazai, Arch. Biochem. Biophys., 461, 225 (2007); https://doi.org/10.1016/j.abb.2007.02.020.