Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chemical Profiling of Polysaccharides Present in Peels of Citrus limetta and Bioassay based Screening of in vitro Antioxidant Activities
Corresponding Author(s) : Tuhin Ghosh
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
In this analyses, the chemical compositions of polysaccharides isolated from the peels of Citrus limetta had been studied and discussed its antioxidant activity of different active fractions. To emphasize the chemical structure of polysaccharides, a rhamnoglucan polysaccharide was identified with probable ester linked phenolic acid. The sugar composition and purification by size exclusion chromatography (SEC) has been presented. The antioxidant capacities of the extracts prepared from Citrus limetta peel powder were determined using well known in vitro systems and standard procedure for ferric reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) (ABTS•+), hydroxyl radical (OH•), nitric oxide (NO) assay, total antioxidant activity (TAA) and metal chelation property. The rhamnoglucan (A) present exhibited the highest bioactivity potentiality succeeded by traces of uronic acid and galactan. From the investigation, it could be emphasized that water extracted polysaccharide, which brings forth potent pharmacological activities figures out the importance as alternative natural compounds as to-be-exploited leads for low-cost sources of efficient bioactive molecules with strong antioxidant activities in different pharmaceutical and cosmoceutical formulations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Halliwell and J.M. Gutteridge, Methods Enzymol., 186, 1 (1990); https://doi.org/10.1016/0076-6879(90)86093-B
- B. Halliwell, Br. J. Clin. Pharmacol., 75, 637 (2013); https://doi.org/10.1111/j.1365-2125.2012.04272.x
- M.J. Aguirre, M. Isaacs, B. Matsuhiro, L. Mendoza and E.A. Zuniga, Carbohydr. Res., 344, 1095 (2009); https://doi.org/10.1016/j.carres.2009.03.024
- T.C.P. Dinis, V.M.C. Madeira and L.M. Almeida, Arch. Biochem. Biophys., 315, 161 (1994); https://doi.org/10.1006/abbi.1994.1485
- B. Halliwell and J.M.C. Gutteridge, Biochem. J., 219, 1 (1984); https://doi.org/10.1042/bj2190001
- H. Wiseman and B. Halliwell, Biochem. J., 313, 17 (1996); https://doi.org/10.1042/bj3130017
- X.P. Yuan, J. Wang, H.Y. Yao and F. Chen, LWT-Food Sci. Technol.., 38, 877 (2005); https://doi.org/10.1016/j.lwt.2004.09.012
- A. Manthey and K. Grohmann, J. Agric. Food Chem., 49, 3268 (2001); https://doi.org/10.1021/jf010011r
- S. Kumar, R. Warikoo, M. Mishra, A. Seth and N. Wahab, Parasitol. Res., 111, 173 (2012); https://doi.org/10.1007/s00436-011-2814-5
- M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, Anal. Chem., 28, 350 (1956); https://doi.org/10.1021/ac60111a017
- A. Ahmed and J.M. Labavitch, J. Food Biochem., 1, 361 (1978); https://doi.org/10.1111/j.1745-4514.1978.tb00193.x
- A.B. Blakeney, P.J. Harris, R.J. Henry and B.A. Stone, Carbohydr. Res., 113, 291 (1983); https://doi.org/10.1016/0008-6215(83)88244-5
- S.K. Majee, S. Ray, K. Ghosh, V. Micard and B. Ray, Int. J. Biol. Macromol., 75, 144 (2015); https://doi.org/10.1016/j.ijbiomac.2015.01.024
- S. Khawas, V. Sivová, N. Anand, K. Bera, B. Ray, G. Nosálová and S. Ray, Int. J. Biol. Macromol., 109, 681 (2018); https://doi.org/10.1016/j.ijbiomac.2017.12.098
- A.B. Blakeney and B.A. Stone, Carbohydr. Res., 140, 319 (1985); https://doi.org/10.1016/0008-6215(85)85132-6
- S. Khawas, G. Nosálová, S.K. Majee, K. Ghosh, W. Raja, V. Sivová and B. Ray, Int. J. Biol. Macromol., 99, 335 (2017); https://doi.org/10.1016/j.ijbiomac.2017.02.093
- K. Shimada, K. Fujikawa, K. Yahara and T. Nakamura, J. Agric. Food Chem., 40, 945 (1992); https://doi.org/10.1021/jf00018a005
- I.F.F. Benzie and J.J. Strain, Anal. Biochem., 239, 70 (1996); https://doi.org/10.1006/abio.1996.0292
- R. Pulido, L. Bravo and F. Saura-Calixto, J. Agric. Food Chem., 48, 3396 (2000); https://doi.org/10.1021/jf9913458
- S.M. Klein, G. Cohen and A.I. Cederbaum, Biochemistry, 20, 6006 (1981); https://doi.org/10.1021/bi00524a013
- R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. RiceEvans, Free Radic. Biol. Med., 26, 1231 (1999); https://doi.org/10.1016/S0891-5849(98)00315-3
- F. Yamaguchi, T. Ariga, Y. Yoshimura and K. Nakazawa, J. Agric. Food Chem., 48, 180 (2000); https://doi.org/10.1021/jf990845y
- R. Matsukawa, Z. Dubinsky, E. Kishimoto, K. Masaki, Y. Masuda, T. Takeuchi, M. Chihara, Y. Yamamoto, E. Niki and I. Karube, J. Appl. Phycol., 9, 29 (1997); https://doi.org/10.1023/A:1007935218120
- T. Yamaguchi, H. Takamura, T. Matoba and J. Terao, Biosci. Biotechnol. Biochem., 62, 1201 (1998); https://doi.org/10.1271/bbb.62.1201
- W. Brand-Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
- R. Amarowicz, R.B. Pegg, P. Rahimi-Moghaddam, B. Barl and J.A. Weil, Food Chem., 84, 551 (2004); https://doi.org/10.1016/S0308-8146(03)00278-4
- R.P. Singh, K.N. Chidambara Murthy and G.K. Jayaprakasha, J. Agric. Food Chem., 50, 81 (2002); https://doi.org/10.1021/jf010865b
- X.Y. Wang, H. Li and H. Wang, Involvement of Wine Polyphenols in the Protective Effect against Cardiovascular Diseases, Proceedings of the Fifth International Symposium on Viticulture and Enology, vol. 5, 171-177 (2007).
References
B. Halliwell and J.M. Gutteridge, Methods Enzymol., 186, 1 (1990); https://doi.org/10.1016/0076-6879(90)86093-B
B. Halliwell, Br. J. Clin. Pharmacol., 75, 637 (2013); https://doi.org/10.1111/j.1365-2125.2012.04272.x
M.J. Aguirre, M. Isaacs, B. Matsuhiro, L. Mendoza and E.A. Zuniga, Carbohydr. Res., 344, 1095 (2009); https://doi.org/10.1016/j.carres.2009.03.024
T.C.P. Dinis, V.M.C. Madeira and L.M. Almeida, Arch. Biochem. Biophys., 315, 161 (1994); https://doi.org/10.1006/abbi.1994.1485
B. Halliwell and J.M.C. Gutteridge, Biochem. J., 219, 1 (1984); https://doi.org/10.1042/bj2190001
H. Wiseman and B. Halliwell, Biochem. J., 313, 17 (1996); https://doi.org/10.1042/bj3130017
X.P. Yuan, J. Wang, H.Y. Yao and F. Chen, LWT-Food Sci. Technol.., 38, 877 (2005); https://doi.org/10.1016/j.lwt.2004.09.012
A. Manthey and K. Grohmann, J. Agric. Food Chem., 49, 3268 (2001); https://doi.org/10.1021/jf010011r
S. Kumar, R. Warikoo, M. Mishra, A. Seth and N. Wahab, Parasitol. Res., 111, 173 (2012); https://doi.org/10.1007/s00436-011-2814-5
M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, Anal. Chem., 28, 350 (1956); https://doi.org/10.1021/ac60111a017
A. Ahmed and J.M. Labavitch, J. Food Biochem., 1, 361 (1978); https://doi.org/10.1111/j.1745-4514.1978.tb00193.x
A.B. Blakeney, P.J. Harris, R.J. Henry and B.A. Stone, Carbohydr. Res., 113, 291 (1983); https://doi.org/10.1016/0008-6215(83)88244-5
S.K. Majee, S. Ray, K. Ghosh, V. Micard and B. Ray, Int. J. Biol. Macromol., 75, 144 (2015); https://doi.org/10.1016/j.ijbiomac.2015.01.024
S. Khawas, V. Sivová, N. Anand, K. Bera, B. Ray, G. Nosálová and S. Ray, Int. J. Biol. Macromol., 109, 681 (2018); https://doi.org/10.1016/j.ijbiomac.2017.12.098
A.B. Blakeney and B.A. Stone, Carbohydr. Res., 140, 319 (1985); https://doi.org/10.1016/0008-6215(85)85132-6
S. Khawas, G. Nosálová, S.K. Majee, K. Ghosh, W. Raja, V. Sivová and B. Ray, Int. J. Biol. Macromol., 99, 335 (2017); https://doi.org/10.1016/j.ijbiomac.2017.02.093
K. Shimada, K. Fujikawa, K. Yahara and T. Nakamura, J. Agric. Food Chem., 40, 945 (1992); https://doi.org/10.1021/jf00018a005
I.F.F. Benzie and J.J. Strain, Anal. Biochem., 239, 70 (1996); https://doi.org/10.1006/abio.1996.0292
R. Pulido, L. Bravo and F. Saura-Calixto, J. Agric. Food Chem., 48, 3396 (2000); https://doi.org/10.1021/jf9913458
S.M. Klein, G. Cohen and A.I. Cederbaum, Biochemistry, 20, 6006 (1981); https://doi.org/10.1021/bi00524a013
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. RiceEvans, Free Radic. Biol. Med., 26, 1231 (1999); https://doi.org/10.1016/S0891-5849(98)00315-3
F. Yamaguchi, T. Ariga, Y. Yoshimura and K. Nakazawa, J. Agric. Food Chem., 48, 180 (2000); https://doi.org/10.1021/jf990845y
R. Matsukawa, Z. Dubinsky, E. Kishimoto, K. Masaki, Y. Masuda, T. Takeuchi, M. Chihara, Y. Yamamoto, E. Niki and I. Karube, J. Appl. Phycol., 9, 29 (1997); https://doi.org/10.1023/A:1007935218120
T. Yamaguchi, H. Takamura, T. Matoba and J. Terao, Biosci. Biotechnol. Biochem., 62, 1201 (1998); https://doi.org/10.1271/bbb.62.1201
W. Brand-Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
R. Amarowicz, R.B. Pegg, P. Rahimi-Moghaddam, B. Barl and J.A. Weil, Food Chem., 84, 551 (2004); https://doi.org/10.1016/S0308-8146(03)00278-4
R.P. Singh, K.N. Chidambara Murthy and G.K. Jayaprakasha, J. Agric. Food Chem., 50, 81 (2002); https://doi.org/10.1021/jf010865b
X.Y. Wang, H. Li and H. Wang, Involvement of Wine Polyphenols in the Protective Effect against Cardiovascular Diseases, Proceedings of the Fifth International Symposium on Viticulture and Enology, vol. 5, 171-177 (2007).