Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Degradation of High Density Polyethylene using CaO Nanocatalyst
Corresponding Author(s) : R. Ameta
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
The photodegradation of high density polyethylene (HDPE) using CaO nanoparticles as a catalyst was carried out using 500 W lamp. After exposure, morphology as well as thermal properties of the HDPE was investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). SEM results showed that the HDPE is more prone to crack into small fragments, which indicated a rise in crystallinity with different amounts of catalyst i.e. CaO nanoparticles. The DSC results confirmed the remarkable influence of photodegradation on degree of crystallinity (XC%), fusion enthalpy (ΔH J g-1) and melting temperature (Tm) of HDPE. Infrared spectrometry (FTIR) demonstrated all functional groups of HDPE, present before and after photodegradation. Overall results showed that HDPE was photodegraded into small fragments successfully by using CaO nanopartilces, where different functional groups such as carbonyl, esters and vinyl were obtained during chain scission.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ziabka, A. Mertas, W. Krol, A. Bobrowski and J. Chlopek, Adv. Mater., 315, 218 (2012); https://doi.org/10.1002/masy.201250527
- D.N. Bikiaris and K.S. Triantafyllidis, Mater. Lett., 93, 1 (2013); https://doi.org/10.1016/j.matlet.2012.10.128
- J. Fresnais, J.P. Chapel, L. Benyahia and F. Poncin-Epaillard, J. Adhes. Sci. Technol., 23, 447 (2009); https://doi.org/10.1163/156856108X370127
- M. Dun, J. Hao, W. Wang, G. Wang and H. Cheng, Compos., Part B Eng., 159, 369 (2019); https://doi.org/10.1016/j.compositesb.2018.09.090
- T. Liu, A. Huang, L.-H. Geng, X.-H. Lian, B.-Y. Chen, B.S. Hsiao, T.-R. Kuang and X.-F. Peng, Compos. Sci. Technol., 167, 301 (2018); https://doi.org/10.1016/j.compscitech.2018.08.004
- R. Anand, J.R. Ramanujam, S. Kulothungan, C.N. Murugalakshmi, V. Sharanya and K. Bhuvaneswari, J. Ind. Pollut. Cont., 24, 129 (2008).
- D. He, Y. Luo, S. Lu, M. Liu, Y. Song and L. Lei, TrAC Trends Anal. Chem., 109, 163 (2018);https://doi.org/10.1016/j.trac.2018.10.006
- P. Pavani and T.R. Rajeswari, J. Chem. Pharm. Sci., 3, 87 (2014).
- A. Grover, A. Gupta, S. Chandra, A. Kumari and S.M.P. Khurana, Int. J. Environ. Sci., 5, 1091 (2015).
- M. Eriksen, N. Maximenko, M. Thiel, A. Cummins, G. Lattin, S. Wilson, J. Hafner, A. Zellers and S. Rifman, Mar. Pollut. Bull., 68, 71 (2013); https://doi.org/10.1016/j.marpolbul.2012.12.021
- S.L. Wright, R.C. Thompson and T.S. Galloway, Environ. Poll., 178, 483 (2013); https://doi.10.1016/j.envpol.2013.02.031
- M. Bergmann, V. Wirzberger, T. Krumpen, C. Lorenz, S. Primpke, M.B. Tekman and G. Gerdts, Environ. Sci. Technol., 51, 11000 (2017); https://doi.org/10.1021/acs.est.7b03331
- J.D.M. Mendez and R. Silva-Rodriguez, Heliyon, 4, e01020 (2018); https://doi.org/10.1016/j.heliyon.2018.e01020
- O. Alam, M. Billah and D. Yajie, Resour. Conserv. Recycl., 132, 121 (2018); https://doi.org/10.1016/j.resconrec.2018.01.037
- S.J. Royer, S. Ferron, S.T. Wilson and D.M. Karl, PLoS One, 13, e0200574 (2018); https://doi.org/10.1371/journal.pone.0200574
- D.P. Serrano, J. Aguado, G. Vicente and N. Sanchez, J. Anal. Appl. Pyrolysis, 78, 194 (2007); https://doi.org/10.1016/j.jaap.2006.07.001
- H. Liu, P. Song, Z. Fang, L. Shen and M. Peng, Thermochim. Acta, 506, 98 (2010); https://doi.org/10.1016/j.tca.2010.04.029
- K. Chrissafis, K.M. Paraskevopoulos, E. Pavlidou and D. Bikiaris, Thermochim. Acta, 485, 65 (2009); https://doi.org/10.1016/j.tca.2008.12.011
- A.M.R. Ewais, R.K. Rowe and J. Scheirs, Geotext. Geomembr., 42, 111 (2014); https://doi.org/10.1016/j.geotexmem.2014.01.004
- A. Martínez-Romo, R. González-Mota, J.J. Soto-Bernal and I. RosalesCandelas, J. Spectrosc., 2015, 586514 (2015); https://doi.org/10.1155/2015/586514
- V.S. Kumawat, J. Bhatt, D. Sharma, S.C. Ameta and R. Ameta, J. Emerg. Technol. Innov. Res., 6, 611 (2019).
- T. Ojeda, A. Freitas, K. Birck, E. Dalmolin, R. Jacques, F. Bento and F. Camargo, Polym. Degrad. Stab., 96, 703 (2011); https://doi.org/ 10.1016/j.polymdegradstab.2010.12.004
References
M. Ziabka, A. Mertas, W. Krol, A. Bobrowski and J. Chlopek, Adv. Mater., 315, 218 (2012); https://doi.org/10.1002/masy.201250527
D.N. Bikiaris and K.S. Triantafyllidis, Mater. Lett., 93, 1 (2013); https://doi.org/10.1016/j.matlet.2012.10.128
J. Fresnais, J.P. Chapel, L. Benyahia and F. Poncin-Epaillard, J. Adhes. Sci. Technol., 23, 447 (2009); https://doi.org/10.1163/156856108X370127
M. Dun, J. Hao, W. Wang, G. Wang and H. Cheng, Compos., Part B Eng., 159, 369 (2019); https://doi.org/10.1016/j.compositesb.2018.09.090
T. Liu, A. Huang, L.-H. Geng, X.-H. Lian, B.-Y. Chen, B.S. Hsiao, T.-R. Kuang and X.-F. Peng, Compos. Sci. Technol., 167, 301 (2018); https://doi.org/10.1016/j.compscitech.2018.08.004
R. Anand, J.R. Ramanujam, S. Kulothungan, C.N. Murugalakshmi, V. Sharanya and K. Bhuvaneswari, J. Ind. Pollut. Cont., 24, 129 (2008).
D. He, Y. Luo, S. Lu, M. Liu, Y. Song and L. Lei, TrAC Trends Anal. Chem., 109, 163 (2018);https://doi.org/10.1016/j.trac.2018.10.006
P. Pavani and T.R. Rajeswari, J. Chem. Pharm. Sci., 3, 87 (2014).
A. Grover, A. Gupta, S. Chandra, A. Kumari and S.M.P. Khurana, Int. J. Environ. Sci., 5, 1091 (2015).
M. Eriksen, N. Maximenko, M. Thiel, A. Cummins, G. Lattin, S. Wilson, J. Hafner, A. Zellers and S. Rifman, Mar. Pollut. Bull., 68, 71 (2013); https://doi.org/10.1016/j.marpolbul.2012.12.021
S.L. Wright, R.C. Thompson and T.S. Galloway, Environ. Poll., 178, 483 (2013); https://doi.10.1016/j.envpol.2013.02.031
M. Bergmann, V. Wirzberger, T. Krumpen, C. Lorenz, S. Primpke, M.B. Tekman and G. Gerdts, Environ. Sci. Technol., 51, 11000 (2017); https://doi.org/10.1021/acs.est.7b03331
J.D.M. Mendez and R. Silva-Rodriguez, Heliyon, 4, e01020 (2018); https://doi.org/10.1016/j.heliyon.2018.e01020
O. Alam, M. Billah and D. Yajie, Resour. Conserv. Recycl., 132, 121 (2018); https://doi.org/10.1016/j.resconrec.2018.01.037
S.J. Royer, S. Ferron, S.T. Wilson and D.M. Karl, PLoS One, 13, e0200574 (2018); https://doi.org/10.1371/journal.pone.0200574
D.P. Serrano, J. Aguado, G. Vicente and N. Sanchez, J. Anal. Appl. Pyrolysis, 78, 194 (2007); https://doi.org/10.1016/j.jaap.2006.07.001
H. Liu, P. Song, Z. Fang, L. Shen and M. Peng, Thermochim. Acta, 506, 98 (2010); https://doi.org/10.1016/j.tca.2010.04.029
K. Chrissafis, K.M. Paraskevopoulos, E. Pavlidou and D. Bikiaris, Thermochim. Acta, 485, 65 (2009); https://doi.org/10.1016/j.tca.2008.12.011
A.M.R. Ewais, R.K. Rowe and J. Scheirs, Geotext. Geomembr., 42, 111 (2014); https://doi.org/10.1016/j.geotexmem.2014.01.004
A. Martínez-Romo, R. González-Mota, J.J. Soto-Bernal and I. RosalesCandelas, J. Spectrosc., 2015, 586514 (2015); https://doi.org/10.1155/2015/586514
V.S. Kumawat, J. Bhatt, D. Sharma, S.C. Ameta and R. Ameta, J. Emerg. Technol. Innov. Res., 6, 611 (2019).
T. Ojeda, A. Freitas, K. Birck, E. Dalmolin, R. Jacques, F. Bento and F. Camargo, Polym. Degrad. Stab., 96, 703 (2011); https://doi.org/ 10.1016/j.polymdegradstab.2010.12.004