Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Some Aromatic and Aliphatic Esters Using WO3/ZrO2 Solid Acid Catalyst under Solvent Free Conditions
Corresponding Author(s) : Vijaya Charan Guguloth
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
A simple method is delineated for the synthesis of substituted ester products in superior yields by esterification reaction under solvent unbound condition using tungsten upgraded ZrO2 solid acid catalyst at 353 K. The WO3/ZrO2 catalyst has been prepared by using impregnation method followed by calcination at 923 K over a period of 6 h in air atmosphere. SEM, XRD, FTIR, and BET surface area techniques were used to categorize this catalyst. Zirconia has both acidic and basic possessions which can be changed by incorporating suitable promoter atom like tungsten which in turn increases the surface area thereby enhancing the surface acidity. Impregnation of W6+ ions exhibits a strong influence on phase modification of zirconia from thermodynamically solid monoclinic to metastable tetragonal phase. Amalgamation of promoter W6+ will stabilize tetragonal phase which is active in catalyzing reactions. In esterification reaction WO3/ZrO2 catalyst was found to be stable, efficient and environmental friendly, effortlessly recovered by filtration, excellent yield of product and can be reusable efficiently.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Otera, Chem. Rev., 93, 1449 (1993); https://doi.org/10.1021/cr00020a004
- A.S. Franklin, J. Chem. Soc. Perkin Trans., 2451 (1998); https://doi.org/10.1039/a705687g
- Y. Nishimoto, S.A. Babu, M. Yasuda and A. Baba, J. Org. Chem., 73, 9465 (2008); https://doi.org/10.1021/jo801914x
- S.P. Chavan, S. Garai, A.K. Dutta and S. Pal, Eur. J. Org. Chem., 2012, 6841 (2012); https://doi.org/10.1002/ejoc.201201181
- M.S. Newman, J. Am. Chem. Soc., 63, 2431 (1941); https://doi.org/10.1021/ja01854a033
- J. Otera, Angew. Chem. Int., Ed., 40, 2044 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2044::AIDANIE2044>3.0.CO;2-Y
- W.B. Pan, F.R. Chang, L.M. Wei, M.J. Wu and Y.C. Wu, Tetrahedron Lett., 44, 331 (2003); https://doi.org/10.1016/S0040-4039(02)02578-9
- K. Ramalinga, P. Vijayalakshmi and T.N.B. Kaimal, Tetrahedron Lett., 43, 879 (2002); https://doi.org/10.1016/S0040-4039(01)02235-3
- M.I. De Sairre, E.S. Bronze-Uhle and P.M. Donate, Tetrahedron Lett., 46, 2705 (2005); https://doi.org/10.1016/j.tetlet.2005.01.158
- L.I. Koval, V.I. Dzyuba, O.L. Ilnitska and V.I. Pekhnyo, Tetrahedron Lett., 49, 1645 (2008); https://doi.org/10.1016/j.tetlet.2008.01.018
- D. Jiang, Y.Y. Wang, M. Tu and L.Y. Dai, Chin. Chem. Lett., 19, 889 (2008); https://doi.org/10.1016/j.cclet.2008.04.035
- G.B.B. Varadwaj and K.M. Parida, Catal. Lett., 141, 1476 (2011); https://doi.org/10.1007/s10562-011-0684-1
- B.M. Reddy, V.R. Reddy and B. Manohar, Synth. Commun., 29, 1235 (1999); https://doi.org/10.1080/00397919908086095
- V.C. Guguloth, G. Raju, M. Basude and S. Battu, Int. J. Chem. Anal. Sci., 5, 86 (2014).
- V. Banothu, M. Basude and S. Battu, J. Chem. Pharm. Res., 5, 97 (2013).
- M. Basude and V.S. Sunkara, J. Chem. Pharm. Res., 5, 46 (2013).
- H.R. Chen, J.L. Shi, J. Yu, L.Z. Wang and D.S. Yan, Micropor. Mesopor. Mater., 39, 171 (2000); https://doi.org/10.1016/S1387-1811(00)00193-1
- A. Khodakov, J. Yang, S. Su, E. Iglesia and A.T. Bell, J. Catal., 177, 343 (1998); https://doi.org/10.1006/jcat.1998.2143
- J.R. Sohn and M.Y. Park, Langmuir, 14, 6140 (1998); https://doi.org/10.1021/la980222z
- K.V. Bineesh, D.K. Kim and D.W. Park, Nanoscale, 2, 1222 (2010); https://doi.org/10.1039/C0NR00108B
References
J. Otera, Chem. Rev., 93, 1449 (1993); https://doi.org/10.1021/cr00020a004
A.S. Franklin, J. Chem. Soc. Perkin Trans., 2451 (1998); https://doi.org/10.1039/a705687g
Y. Nishimoto, S.A. Babu, M. Yasuda and A. Baba, J. Org. Chem., 73, 9465 (2008); https://doi.org/10.1021/jo801914x
S.P. Chavan, S. Garai, A.K. Dutta and S. Pal, Eur. J. Org. Chem., 2012, 6841 (2012); https://doi.org/10.1002/ejoc.201201181
M.S. Newman, J. Am. Chem. Soc., 63, 2431 (1941); https://doi.org/10.1021/ja01854a033
J. Otera, Angew. Chem. Int., Ed., 40, 2044 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2044::AIDANIE2044>3.0.CO;2-Y
W.B. Pan, F.R. Chang, L.M. Wei, M.J. Wu and Y.C. Wu, Tetrahedron Lett., 44, 331 (2003); https://doi.org/10.1016/S0040-4039(02)02578-9
K. Ramalinga, P. Vijayalakshmi and T.N.B. Kaimal, Tetrahedron Lett., 43, 879 (2002); https://doi.org/10.1016/S0040-4039(01)02235-3
M.I. De Sairre, E.S. Bronze-Uhle and P.M. Donate, Tetrahedron Lett., 46, 2705 (2005); https://doi.org/10.1016/j.tetlet.2005.01.158
L.I. Koval, V.I. Dzyuba, O.L. Ilnitska and V.I. Pekhnyo, Tetrahedron Lett., 49, 1645 (2008); https://doi.org/10.1016/j.tetlet.2008.01.018
D. Jiang, Y.Y. Wang, M. Tu and L.Y. Dai, Chin. Chem. Lett., 19, 889 (2008); https://doi.org/10.1016/j.cclet.2008.04.035
G.B.B. Varadwaj and K.M. Parida, Catal. Lett., 141, 1476 (2011); https://doi.org/10.1007/s10562-011-0684-1
B.M. Reddy, V.R. Reddy and B. Manohar, Synth. Commun., 29, 1235 (1999); https://doi.org/10.1080/00397919908086095
V.C. Guguloth, G. Raju, M. Basude and S. Battu, Int. J. Chem. Anal. Sci., 5, 86 (2014).
V. Banothu, M. Basude and S. Battu, J. Chem. Pharm. Res., 5, 97 (2013).
M. Basude and V.S. Sunkara, J. Chem. Pharm. Res., 5, 46 (2013).
H.R. Chen, J.L. Shi, J. Yu, L.Z. Wang and D.S. Yan, Micropor. Mesopor. Mater., 39, 171 (2000); https://doi.org/10.1016/S1387-1811(00)00193-1
A. Khodakov, J. Yang, S. Su, E. Iglesia and A.T. Bell, J. Catal., 177, 343 (1998); https://doi.org/10.1006/jcat.1998.2143
J.R. Sohn and M.Y. Park, Langmuir, 14, 6140 (1998); https://doi.org/10.1021/la980222z
K.V. Bineesh, D.K. Kim and D.W. Park, Nanoscale, 2, 1222 (2010); https://doi.org/10.1039/C0NR00108B