Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Biological Activity of Silver Nanoparticles from Medicinal Palm Tree Bismarckia nobilis Seeds
Corresponding Author(s) : Tanveer Alam
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
Silver nanoparticles (AgNPs) have received significant attention due to their distinctive antimicrobial, anticancer, catalytic and photochemical activity. The objective of this work is to amalgamate silver nanoparticles from the aqueous extract of Bismarckia nobilis seeds using green method, characterization using UV-visible spectroscopy, X-ray diffraction, transmission electron microscopy and FTIR spectroscopy. Further, its antimicrobial and anticancer activities were evaluated. The results displayed the characteristic UV peak, cubic phase with crystalline nature, spherical in shape having average size 14 nm, prominent peaks of bio-functional groups, good antimicrobial and anticancer activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ekor, Front. Pharmacol., 4, 177 (2013); https://doi.org/10.3389/fphar.2013.00177
- X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535
- A.H. Lu, E.E. Salabas and F. Schuth, Angew. Chem. Int. Ed., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866
- S. Kargozar and M. Mozafari, Mater. Today, Proc., 5, 15492 (2018); https://doi.org/10.1016/j.matpr.2018.04.155
- N. Pantidos and L.E. Horsfall, J. Nanomed. Nanotechnol., 5, 1 (2014); https://doi.org/10.4172/2157-7439.1000233
- P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, Nano Lett., 1, 515 (2001); https://doi.org/10.1021/nl0155274
- M. Mohammadlou, H. Maghsoudi and H.J.I.F.R.J. Jafarizadeh-Malmiri, Int. Food Res. J., 23, 446 (2016).
- P. Kuppusamy, M.M. Yusoff, G.P. Maniam and N. Govindan, Saudi Pharm. J., 24, 473 (2016); https://doi.org/10.1016/j.jsps.2014.11.013
- B. Singh, T.K. Bhat and B. Singh, J. Agric. Food Chem., 51, 5579 (2003); https://doi.org/10.1021/jf021150r
- T.T. Shen, Industrial Pollution Prevention, In: Industrial Pollution Prevention, Springer, Berlin, Heidelberg, pp 15-35 (1995).
- H. Freeman, T. Harten, J. Springer, P. Randall, M.A. Curran and K. Stone, J. Air Waste Manage. Assoc., 42, 618 (1992); https://doi.org/10.1080/10473289.1992.10467016
- A.D. Pan, Ph.D. Thesis, The Late Oligocene (28–27 Ma) Guang River Flora from the Northwestern Plateau of Ethiopia. Southern Methodist University, Ethopia (2007).
- B.F. Jacobs, A.D. Pan and C.R. Scotese, A Review of the Cenozoic Vegetation History of Africa, In: Cenozoic Mammals of Africa, California University of Press, Berkely, Los Angels, London, pp 57- 72 (2010).
- A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh and H. Sharghi, J. Nanomater., 2015, 720654 (2015); https://doi.org/10.1155/2015/720654
- L. Rastogi and J. Arunachalam, Mater. Chem. Phys., 129, 558 (2011); https://doi.org/10.1016/j.matchemphys.2011.04.068
- T.G. Obrig, C.B. Louise, C.A. Lingwood, B. Boyd, L. Barley-Maloney and T.O. Daniel, J. Biol. Chem., 268, 15484 (1993).
- N.P. Raval, P.U. Shah and N.K. Shah, Environ. Sci. Pollut. Res. Int., 23, 14810 (2016); https://doi.org/10.1007/s11356-016-6970-0
- E.S. Madivoli, P.G. Kareru, A.N. Gachanja, S.M. Mugo, D.S. Makhanu, S.I. Wanakai and Y. Gavamukulya, J. Inorg. Organomet. Polym. Mater., 30, 2842 (2020); https://doi.org/10.1007/s10904-019-01432-5
- K. Saware, B. Sawle, B. Salimath, K. Jayanthi and V. Abbaraju, Int. J. Res. Eng. Technol., 3, 867 (2014).
- S. Tyagi, T. Alam, M.A. Khan, H. Tarannum and N. Chauhan, Asian J. Res. Chem, 11, 515 (2018); https://doi.org/10.5958/0974-4150.2018.00092.5
- Z. Liu, X. Ge, Y. Lu, S. Dong, Y. Zhao and M. Zeng, Food Hydrocoll., 26, 311 (2012); https://doi.org/10.1016/j.foodhyd.2011.06.008
- A. Panacek, M. Kolao, R. Veeeoova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zbooil and L. Kvítek, Biomaterials, 30, 6333 (2009); https://doi.org/10.1016/j.biomaterials.2009.07.065
References
M. Ekor, Front. Pharmacol., 4, 177 (2013); https://doi.org/10.3389/fphar.2013.00177
X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535
A.H. Lu, E.E. Salabas and F. Schuth, Angew. Chem. Int. Ed., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866
S. Kargozar and M. Mozafari, Mater. Today, Proc., 5, 15492 (2018); https://doi.org/10.1016/j.matpr.2018.04.155
N. Pantidos and L.E. Horsfall, J. Nanomed. Nanotechnol., 5, 1 (2014); https://doi.org/10.4172/2157-7439.1000233
P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, Nano Lett., 1, 515 (2001); https://doi.org/10.1021/nl0155274
M. Mohammadlou, H. Maghsoudi and H.J.I.F.R.J. Jafarizadeh-Malmiri, Int. Food Res. J., 23, 446 (2016).
P. Kuppusamy, M.M. Yusoff, G.P. Maniam and N. Govindan, Saudi Pharm. J., 24, 473 (2016); https://doi.org/10.1016/j.jsps.2014.11.013
B. Singh, T.K. Bhat and B. Singh, J. Agric. Food Chem., 51, 5579 (2003); https://doi.org/10.1021/jf021150r
T.T. Shen, Industrial Pollution Prevention, In: Industrial Pollution Prevention, Springer, Berlin, Heidelberg, pp 15-35 (1995).
H. Freeman, T. Harten, J. Springer, P. Randall, M.A. Curran and K. Stone, J. Air Waste Manage. Assoc., 42, 618 (1992); https://doi.org/10.1080/10473289.1992.10467016
A.D. Pan, Ph.D. Thesis, The Late Oligocene (28–27 Ma) Guang River Flora from the Northwestern Plateau of Ethiopia. Southern Methodist University, Ethopia (2007).
B.F. Jacobs, A.D. Pan and C.R. Scotese, A Review of the Cenozoic Vegetation History of Africa, In: Cenozoic Mammals of Africa, California University of Press, Berkely, Los Angels, London, pp 57- 72 (2010).
A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh and H. Sharghi, J. Nanomater., 2015, 720654 (2015); https://doi.org/10.1155/2015/720654
L. Rastogi and J. Arunachalam, Mater. Chem. Phys., 129, 558 (2011); https://doi.org/10.1016/j.matchemphys.2011.04.068
T.G. Obrig, C.B. Louise, C.A. Lingwood, B. Boyd, L. Barley-Maloney and T.O. Daniel, J. Biol. Chem., 268, 15484 (1993).
N.P. Raval, P.U. Shah and N.K. Shah, Environ. Sci. Pollut. Res. Int., 23, 14810 (2016); https://doi.org/10.1007/s11356-016-6970-0
E.S. Madivoli, P.G. Kareru, A.N. Gachanja, S.M. Mugo, D.S. Makhanu, S.I. Wanakai and Y. Gavamukulya, J. Inorg. Organomet. Polym. Mater., 30, 2842 (2020); https://doi.org/10.1007/s10904-019-01432-5
K. Saware, B. Sawle, B. Salimath, K. Jayanthi and V. Abbaraju, Int. J. Res. Eng. Technol., 3, 867 (2014).
S. Tyagi, T. Alam, M.A. Khan, H. Tarannum and N. Chauhan, Asian J. Res. Chem, 11, 515 (2018); https://doi.org/10.5958/0974-4150.2018.00092.5
Z. Liu, X. Ge, Y. Lu, S. Dong, Y. Zhao and M. Zeng, Food Hydrocoll., 26, 311 (2012); https://doi.org/10.1016/j.foodhyd.2011.06.008
A. Panacek, M. Kolao, R. Veeeoova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zbooil and L. Kvítek, Biomaterials, 30, 6333 (2009); https://doi.org/10.1016/j.biomaterials.2009.07.065