Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Novel Sensor from Cyclotriveratrylene Derivative for Rapid Detection of 4-Nitrophenol Based on Fluorescence
Corresponding Author(s) : Divya R. Mishra
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
In order to study various environmental pollutants among the class of nitro aromatic compounds, a new and novel sensor derived from a cyclotriveratrylene derivative has been developed which rapidly detects 4-nitrophenol from among the class of nitro aromatic compounds via spectrofluorimetric method. The newly derrivaritized cyclotriveratrylene compound is successfully confirmed by using the available techniques of 1H NMR, 13C NMR and ESI-MS. The newly developed molecule was named 4C7NbF-CTV. The complexation behaviour of 4C7NbF-CTV with various nitro aromatic compounds was studied. In the absorption spectra a shift was observed, which indicated that 4-nitrophenol interact with 4C7NbF-CTV. An enhanced intensity of fluorescence of 4C7NbF-CTV was observed on adding 4-nitrophenol.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.G. Sultatos, Toxicol. Appl. Pharmacol., 86, 105 (1986); https://doi.org/10.1016/0041-008X(86)90403-5
- L. Somasundaram, J.R. Coats and K.D. Racke, J. Environ. Sci. Health B, 24, 457 (1989); https://doi.org/10.1080/03601238909372661
- M.P. Carver, P.E. Levi and J.E. Riviere, Pestic. Biochem. Physiol., 38, 245 (1990); https://doi.org/10.1016/0048-3575(90)90096-K
- W.A. House, D. Leach, J.L.A. Long, P. Cranwell, C. Smith, L. Bharwaj, A. Meharg, G. Ryland, D.O. Orr and J. Wright, Sci. Total Environ., 194-195, 357 (1997); https://doi.org/10.1016/S0048-9697(96)05375-2
- M.D. Webber and C. Wang, Can. J. Soil Sci., 75, 513 (1995); https://doi.org/10.4141/cjss95-073
- D.C. Trumbore, Environ. Prog., 17, 53 (1998); https://doi.org/10.1002/ep.670170120
- N.A. Marley, J.S. Gaffney and M.M. Cunningham, Environ. Sci. Technol., 27, 2864 (1993); https://doi.org/10.1021/es00049a029
- K. Levsen, S. Behnert, P. Mußmann, M. Raabe and B. Prieß, Int. J. Environ. Anal. Chem., 52, 87 (1993); https://doi.org/10.1080/03067319308042851
- H.S. Rosenkranz and G. Klopman, Mutagenesis, 5, 425 (1990); https://doi.org/10.1093/mutage/5.5.425
- P. Fernandez, M. Grifoll, A.M. Solanas, J.M. Bayona and J. Albaiges, Environ. Sci. Technol., 26, 817 (1992); https://doi.org/10.1021/es00028a024
- A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, Sirajuddin and M.I. Bhanger, Electroanalysis, 21, 1786 (2009); https://doi.org/10.1002/elan.200904622
- P. Mulchandani, C.M. Hangarter, Y. Lei, W. Chen and A. Mulchandani, Biosens. Bioelectron., 21, 523 (2005); https://doi.org/10.1016/j.bios.2004.11.011
- E.P.A. Method, Fed. Regist., 26, 58 (1984).
- E.P.A. Method, Fed. Regist., 26, 153 (1984).
- A. Niazi and A. Yazdanipour, J. Hazard. Mater., 146, 421 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.063
- J.A. Padilla-Sánchez, P. Plaza-Bolaños, R. Romero-González, A. Garrido-Frenich and J.L. Martínez Vidal, J. Chromatogr. A, 1217, 5724 (2010); https://doi.org/10.1016/j.chroma.2010.07.004
- D. Hofmann, F. Hartmann and H. Herrmann, Anal. Bioanal. Chem., 391, 161 (2008); https://doi.org/10.1007/s00216-008-1939-6
- A. Chakrabarti, H.M. Chawla, G. Hundal and N. Pant, Tetrahedron, 61, 12323 (2005); https://doi.org/10.1016/j.tet.2005.09.101
- N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 41, 1130 (2012); https://doi.org/10.1039/C1CS15132K
- K.D. Bhatt, B.A. Makwana, D.J. Vyas, D.R. Mishra and V.K. Jain, J. Lumin., 146, 450 (2014); https://doi.org/10.1016/j.jlumin.2013.10.004
- S.M. Darjee, D.R. Mishra, K.D. Bhatt, D.J. Vyas, K.M. Modi and V.K. Jain, Tetrahedron Lett., 55, 7094 (2014); https://doi.org/10.1016/j.tetlet.2014.10.149
- K.D. Bhatt, H.S. Gupte, B.A. Makwana, D.J. Vyas, D. Maity and V.K. Jain, J. Fluoresc., 22, 1493 (2012); https://doi.org/10.1007/s10895-012-1086-5
- C.B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J.J. Martin and W.E. Jones, J. Phys. Chem. B, 108, 1537 (2004); https://doi.org/10.1021/jp0301406
- S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 76, 1260 (1999); https://doi.org/10.1021/ed076p1260
References
L.G. Sultatos, Toxicol. Appl. Pharmacol., 86, 105 (1986); https://doi.org/10.1016/0041-008X(86)90403-5
L. Somasundaram, J.R. Coats and K.D. Racke, J. Environ. Sci. Health B, 24, 457 (1989); https://doi.org/10.1080/03601238909372661
M.P. Carver, P.E. Levi and J.E. Riviere, Pestic. Biochem. Physiol., 38, 245 (1990); https://doi.org/10.1016/0048-3575(90)90096-K
W.A. House, D. Leach, J.L.A. Long, P. Cranwell, C. Smith, L. Bharwaj, A. Meharg, G. Ryland, D.O. Orr and J. Wright, Sci. Total Environ., 194-195, 357 (1997); https://doi.org/10.1016/S0048-9697(96)05375-2
M.D. Webber and C. Wang, Can. J. Soil Sci., 75, 513 (1995); https://doi.org/10.4141/cjss95-073
D.C. Trumbore, Environ. Prog., 17, 53 (1998); https://doi.org/10.1002/ep.670170120
N.A. Marley, J.S. Gaffney and M.M. Cunningham, Environ. Sci. Technol., 27, 2864 (1993); https://doi.org/10.1021/es00049a029
K. Levsen, S. Behnert, P. Mußmann, M. Raabe and B. Prieß, Int. J. Environ. Anal. Chem., 52, 87 (1993); https://doi.org/10.1080/03067319308042851
H.S. Rosenkranz and G. Klopman, Mutagenesis, 5, 425 (1990); https://doi.org/10.1093/mutage/5.5.425
P. Fernandez, M. Grifoll, A.M. Solanas, J.M. Bayona and J. Albaiges, Environ. Sci. Technol., 26, 817 (1992); https://doi.org/10.1021/es00028a024
A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, Sirajuddin and M.I. Bhanger, Electroanalysis, 21, 1786 (2009); https://doi.org/10.1002/elan.200904622
P. Mulchandani, C.M. Hangarter, Y. Lei, W. Chen and A. Mulchandani, Biosens. Bioelectron., 21, 523 (2005); https://doi.org/10.1016/j.bios.2004.11.011
E.P.A. Method, Fed. Regist., 26, 58 (1984).
E.P.A. Method, Fed. Regist., 26, 153 (1984).
A. Niazi and A. Yazdanipour, J. Hazard. Mater., 146, 421 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.063
J.A. Padilla-Sánchez, P. Plaza-Bolaños, R. Romero-González, A. Garrido-Frenich and J.L. Martínez Vidal, J. Chromatogr. A, 1217, 5724 (2010); https://doi.org/10.1016/j.chroma.2010.07.004
D. Hofmann, F. Hartmann and H. Herrmann, Anal. Bioanal. Chem., 391, 161 (2008); https://doi.org/10.1007/s00216-008-1939-6
A. Chakrabarti, H.M. Chawla, G. Hundal and N. Pant, Tetrahedron, 61, 12323 (2005); https://doi.org/10.1016/j.tet.2005.09.101
N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 41, 1130 (2012); https://doi.org/10.1039/C1CS15132K
K.D. Bhatt, B.A. Makwana, D.J. Vyas, D.R. Mishra and V.K. Jain, J. Lumin., 146, 450 (2014); https://doi.org/10.1016/j.jlumin.2013.10.004
S.M. Darjee, D.R. Mishra, K.D. Bhatt, D.J. Vyas, K.M. Modi and V.K. Jain, Tetrahedron Lett., 55, 7094 (2014); https://doi.org/10.1016/j.tetlet.2014.10.149
K.D. Bhatt, H.S. Gupte, B.A. Makwana, D.J. Vyas, D. Maity and V.K. Jain, J. Fluoresc., 22, 1493 (2012); https://doi.org/10.1007/s10895-012-1086-5
C.B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J.J. Martin and W.E. Jones, J. Phys. Chem. B, 108, 1537 (2004); https://doi.org/10.1021/jp0301406
S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 76, 1260 (1999); https://doi.org/10.1021/ed076p1260