Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Optical and Laser Damage Threshold Studies of Polarizable Organic Crystal: 4-Methylpyridinium Picrate
Corresponding Author(s) : D. Jayalakshmi
Asian Journal of Chemistry,
Vol. 29 No. 6 (2017): Vol 29 Issue 6
Abstract
New organic material has been synthesized and single crystals were grown from aqueous solution. Single crystals of 4-methylpyridinium picrate have been grown by slow evaporation technique acetone as a solvent at room temperature. Single crystal X-ray diffraction study on grown crystals shows that it belongs to monoclinic system. Fourier transform infrared (FTIR) spectroscopic study was performed for the identification of different modes of functional groups present in the compound. The thermal stability of the compound has been determined by TG-DTA curves. The result shows that the material starts decomposing at 171.50 °C. The UV-visible transmission spectrum has been recorded in the range 190-900 nm. The photoconductivity study confirms the negative photoconductive nature of the sample. The dielectric measurement of the compound has been analyzed using dielectric analysis. Laser damage threshold value for the crystal was measured.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.-T. Wu and L. Chen, Structure-Property Relationships in Non-Linear Optical Crystals II, Springer, vol. 145 (2012).
- P.V. Dhanaraj, N.P. Rajesh, G. Vinitha and G. Bhagavannarayana, Mater. Res. Bull., 46, 726 (2011); https://doi.org/10.1016/j.materresbull.2011.01.013.
- N.C. Khalib, K. Thanigaimani, S. Arshad and I.A. Razak, Acta Crystallogr. Sect. E Struct. Rep. Online, 69, o1120 (2013); https://doi.org/10.1107/S1600536813016310.
- M.A. Rajkumar, N.N. Mohideen, S.S.J. Xavier, S. Anbarasu and D.P.A. Devarajan, Acta Crystallogr. Sect. E Struct. Rep. Online, 71, 231 (2015); https://doi.org/10.1107/S2056989015000365.
- F. Brody and P.R. Ruby, in ed.: E. Klingsberge, Pyridine and its Derivatives, Interscience, New York, vol. 114, p. 289 (1960).
- Bruker, APEX2, SAINT, XPREP and SADABS Bruker AXS Inc, Madison, Wisconsin, USA (2004).
- G.M. Sheldrick, SHELXS97 and SHELXL97, University of Gottingen, Germany (1997).
- G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930.
- R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York (1991).
- A.S.H. Hameed, G. Ravi, R. Dhanasekaran and P. Ramasamy, J. Cryst. Growth, 212, 227 (2000); https://doi.org/10.1016/S0022-0248(99)00896-9.
- M. Mersch, K. Buse, W. Sauf, H. Hesse and E. Kratzig, Phys. Status Solidi, 140, 273 (1993); https://doi.org/10.1002/pssa.2211400127.
- D.D.O. Eya, A.J. Ekpunobi and C.E. Okeke, Acad. Open Internet J., 17, 1 (2006).
- R.H. Bube, Photoconductivity of Solids, Wiley, New York (1981).
- I.M. Ashraf, H.A. Elshaikh and A.M. Badr, Cryst. Res. Technol., 39, 63 (2004); https://doi.org/10.1002/crat.200310150.
- K.V. Rao and A. Smakula, J. Appl. Phys., 36, 2031 (1965); https://doi.org/10.1063/1.1714397.
- K.V. Rao and A. Smakula, J. Appl. Phys., 37, 319 (1966); https://doi.org/10.1063/1.1707834.
- G. Prabagaran, S. Arulmozhi, M.D. Raja and J. Madhavan, IOSR J. Appl. Phys., 2, 51 (2013).
- K.B.R. Varma, K.B. Ramanaiah and K.V. Rao, Bull. Mater. Sci., 5, 39 (1983); https://doi.org/10.1007/BF02822348.
- P. Rajesh and P. Ramasamy, J. Cryst. Growth, 311, 3491 (2009); https://doi.org/10.1016/j.jcrysgro.2009.04.020.
- J.A. Brant, D.J. Clark, Y.S. Kim, J.I. Jang, A. Weiland and J.A. Aitken, Inorg. Chem., 54, 2809 (2015); https://doi.org/10.1021/ic502981r.
- N. Vijayan, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, K.K. Maurya and P. Ramasamy, Cryst. Growth Des., 6, 1542 (2006); https://doi.org/10.1021/cg060002g.
- M. Magesh, G. Bhagavannarayana and P. Ramasamy, Spectrochim. Acta Mol. Biomol. Spectrosc, 150, 765 (2015); https://doi.org/10.1016/j.saa.2015.05.077.
- P.S. Patil, S.M. Dharmaprakash, K. Ramakrishna, H.-K. Fun, R.S.S. Kumar and D.N. Rao, J. Cryst. Growth, 303, 520 (2007); https://doi.org/10.1016/j.jcrysgro.2006.12.068.
- S. Sudhahar, M.K. Kumar, B.M. Sornamurthy and R.M. Kumar, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 118, 929 (2014); https://doi.org/10.1016/j.saa.2013.09.072.
References
X.-T. Wu and L. Chen, Structure-Property Relationships in Non-Linear Optical Crystals II, Springer, vol. 145 (2012).
P.V. Dhanaraj, N.P. Rajesh, G. Vinitha and G. Bhagavannarayana, Mater. Res. Bull., 46, 726 (2011); https://doi.org/10.1016/j.materresbull.2011.01.013.
N.C. Khalib, K. Thanigaimani, S. Arshad and I.A. Razak, Acta Crystallogr. Sect. E Struct. Rep. Online, 69, o1120 (2013); https://doi.org/10.1107/S1600536813016310.
M.A. Rajkumar, N.N. Mohideen, S.S.J. Xavier, S. Anbarasu and D.P.A. Devarajan, Acta Crystallogr. Sect. E Struct. Rep. Online, 71, 231 (2015); https://doi.org/10.1107/S2056989015000365.
F. Brody and P.R. Ruby, in ed.: E. Klingsberge, Pyridine and its Derivatives, Interscience, New York, vol. 114, p. 289 (1960).
Bruker, APEX2, SAINT, XPREP and SADABS Bruker AXS Inc, Madison, Wisconsin, USA (2004).
G.M. Sheldrick, SHELXS97 and SHELXL97, University of Gottingen, Germany (1997).
G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930.
R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York (1991).
A.S.H. Hameed, G. Ravi, R. Dhanasekaran and P. Ramasamy, J. Cryst. Growth, 212, 227 (2000); https://doi.org/10.1016/S0022-0248(99)00896-9.
M. Mersch, K. Buse, W. Sauf, H. Hesse and E. Kratzig, Phys. Status Solidi, 140, 273 (1993); https://doi.org/10.1002/pssa.2211400127.
D.D.O. Eya, A.J. Ekpunobi and C.E. Okeke, Acad. Open Internet J., 17, 1 (2006).
R.H. Bube, Photoconductivity of Solids, Wiley, New York (1981).
I.M. Ashraf, H.A. Elshaikh and A.M. Badr, Cryst. Res. Technol., 39, 63 (2004); https://doi.org/10.1002/crat.200310150.
K.V. Rao and A. Smakula, J. Appl. Phys., 36, 2031 (1965); https://doi.org/10.1063/1.1714397.
K.V. Rao and A. Smakula, J. Appl. Phys., 37, 319 (1966); https://doi.org/10.1063/1.1707834.
G. Prabagaran, S. Arulmozhi, M.D. Raja and J. Madhavan, IOSR J. Appl. Phys., 2, 51 (2013).
K.B.R. Varma, K.B. Ramanaiah and K.V. Rao, Bull. Mater. Sci., 5, 39 (1983); https://doi.org/10.1007/BF02822348.
P. Rajesh and P. Ramasamy, J. Cryst. Growth, 311, 3491 (2009); https://doi.org/10.1016/j.jcrysgro.2009.04.020.
J.A. Brant, D.J. Clark, Y.S. Kim, J.I. Jang, A. Weiland and J.A. Aitken, Inorg. Chem., 54, 2809 (2015); https://doi.org/10.1021/ic502981r.
N. Vijayan, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, K.K. Maurya and P. Ramasamy, Cryst. Growth Des., 6, 1542 (2006); https://doi.org/10.1021/cg060002g.
M. Magesh, G. Bhagavannarayana and P. Ramasamy, Spectrochim. Acta Mol. Biomol. Spectrosc, 150, 765 (2015); https://doi.org/10.1016/j.saa.2015.05.077.
P.S. Patil, S.M. Dharmaprakash, K. Ramakrishna, H.-K. Fun, R.S.S. Kumar and D.N. Rao, J. Cryst. Growth, 303, 520 (2007); https://doi.org/10.1016/j.jcrysgro.2006.12.068.
S. Sudhahar, M.K. Kumar, B.M. Sornamurthy and R.M. Kumar, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 118, 929 (2014); https://doi.org/10.1016/j.saa.2013.09.072.