Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Ca1-xCoxTiO3 and its Photocatalytic Activity on Photodegradation of Methylene Blue
Corresponding Author(s) : A.K. Prodjosantoso
Asian Journal of Chemistry,
Vol. 29 No. 6 (2017): Vol 29 Issue 6
Abstract
A series of Ca1-xCoxTiO3 has been prepared through the ceramic method as polycrystalline powders with x = 0, 0.01, 0.025, 0.05 and 0.1. The structure of resulting materials was refined from a powder X-ray diffraction using the Rietvield method showing the perovskite-type structure isostructural with CaTiO3. The morphology and particle size of Ca1-xCoxTiO3 were studied using SEM/EDX that showed a particle size of around 3.5 nm with non-homogenous particle sphere shapes. The electronic structure of CaxCo1-xTiO3 was studied by UV/visible spectroscopy method, which showed that the prepared Ca1-xCoxTiO3 having good response in the visible region with the band gap energy (Eg) of around 2.2 eV, which is highly potent as visible light photocatalysts. The adsorption capacity and adsorption equilibrium constant of the oxides to the methylene blue were also studied. The adsorption process in Ca1-xCoxTiO3 materials follows the Langmuir adsorption type as a consequence of homogenous pore structures. The catalytic activity of Ca1-xCoxTiO3 on the methylene blue degradation are also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.E. Cohen, Nature, 358, 136 (1992); https://doi.org/10.1038/358136a0.
- Y. Hu, J. Schlipf, M. Wussler, M.L. Petrus, W. Jaegermann, T. Bein, P. Müller-Buschbaum and P. Docampo, ACS Nano, 10, 5999 (2016); https://doi.org/10.1021/acsnano.6b01535.
- P. Kanhere and Z. Chen, Molecules, 19, 19995 (2014); https://doi.org/10.3390/molecules191219995.
- J. Shi, W.J. Lee, Y. Liu, Y. Yang and P. Wang, IEEE Trans. Ind. Appl., 48, 1064 (2012); https://doi.org/10.1109/TIA.2012.2190816.
- N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier and M. Grätzel, Angew. Chem. Int. Ed., 53, 3151 (2014); https://doi.org/10.1002/anie.201309361.
- J.W. Shi and L.J. Guo, Prog. Nat. Sci. Mater. Int., 22, 592 (2012); https://doi.org/10.1016/j.pnsc.2012.12.002.
- J. Tian, L. Chen, J. Dai, X. Wang, Y. Yin and P. Wu, Ceram. Int., 35, 2261 (2009); https://doi.org/10.1016/j.ceramint.2008.12.010.
- M. Cernea, F. Vasiliu, C. Plapcianu, C. Bartha, I. Mercioniu, I. Pasuk, R. Lowndes, R. Trusca, G.V. Aldica and L. Pintilie, J. Eur. Ceram. Soc.,33, 2483 (2013); https://doi.org/10.1016/j.jeurceramsoc.2013.03.026.
- L. Chen, F. Tang, Y. Wang, S. Gao, W. Cao, J. Cai and L. Chen, Nano Res., 8, 263 (2015); https://doi.org/10.1007/s12274-014-0662-1.
- S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews and S.G. Mhaisalkar, Adv. Mater., 28, 6804 (2016); https://doi.org/10.1002/adma.201600669.
- M.W. Li, G. Xiao-Mei, H. Yin-Ling and W. Chen-Yang, J. Nano Electron Phys., 5, 1 (2013).
- V. Sharad Gaikwad, B. Ashok and B.G. Vishwas, Der Pharma Chemica, 4, 184 (2012).
- S. Shahabuddin, N.M. Sarih, S. Mohamad and J.J. Ching, Polymers, 8, 27 (2016); https://doi.org/10.3390/polym8020027.
- A. Al-Kdasi, A. Idris, K. Saed and C.T. Guan, Global Nest Int. J., 6, 222 (2004).
- B.A. Hunter, and C.J. Howard, A Computer Program for the Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, (1996).
- M.B. Desta, J. Thermodyn., 2013, 1 (2013); https://doi.org/10.1155/2013/375830.
- A.W. Marczewski, Langmuir, 26, 15229 (2010); https://doi.org/10.1021/la1010049.
- J.P.S. Valente, P.M. Padilha and A.O. Florentino, Chemosphere, 64, 1128 (2006); https://doi.org/10.1016/j.chemosphere.2005.11.050.
References
R.E. Cohen, Nature, 358, 136 (1992); https://doi.org/10.1038/358136a0.
Y. Hu, J. Schlipf, M. Wussler, M.L. Petrus, W. Jaegermann, T. Bein, P. Müller-Buschbaum and P. Docampo, ACS Nano, 10, 5999 (2016); https://doi.org/10.1021/acsnano.6b01535.
P. Kanhere and Z. Chen, Molecules, 19, 19995 (2014); https://doi.org/10.3390/molecules191219995.
J. Shi, W.J. Lee, Y. Liu, Y. Yang and P. Wang, IEEE Trans. Ind. Appl., 48, 1064 (2012); https://doi.org/10.1109/TIA.2012.2190816.
N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier and M. Grätzel, Angew. Chem. Int. Ed., 53, 3151 (2014); https://doi.org/10.1002/anie.201309361.
J.W. Shi and L.J. Guo, Prog. Nat. Sci. Mater. Int., 22, 592 (2012); https://doi.org/10.1016/j.pnsc.2012.12.002.
J. Tian, L. Chen, J. Dai, X. Wang, Y. Yin and P. Wu, Ceram. Int., 35, 2261 (2009); https://doi.org/10.1016/j.ceramint.2008.12.010.
M. Cernea, F. Vasiliu, C. Plapcianu, C. Bartha, I. Mercioniu, I. Pasuk, R. Lowndes, R. Trusca, G.V. Aldica and L. Pintilie, J. Eur. Ceram. Soc.,33, 2483 (2013); https://doi.org/10.1016/j.jeurceramsoc.2013.03.026.
L. Chen, F. Tang, Y. Wang, S. Gao, W. Cao, J. Cai and L. Chen, Nano Res., 8, 263 (2015); https://doi.org/10.1007/s12274-014-0662-1.
S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews and S.G. Mhaisalkar, Adv. Mater., 28, 6804 (2016); https://doi.org/10.1002/adma.201600669.
M.W. Li, G. Xiao-Mei, H. Yin-Ling and W. Chen-Yang, J. Nano Electron Phys., 5, 1 (2013).
V. Sharad Gaikwad, B. Ashok and B.G. Vishwas, Der Pharma Chemica, 4, 184 (2012).
S. Shahabuddin, N.M. Sarih, S. Mohamad and J.J. Ching, Polymers, 8, 27 (2016); https://doi.org/10.3390/polym8020027.
A. Al-Kdasi, A. Idris, K. Saed and C.T. Guan, Global Nest Int. J., 6, 222 (2004).
B.A. Hunter, and C.J. Howard, A Computer Program for the Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, (1996).
M.B. Desta, J. Thermodyn., 2013, 1 (2013); https://doi.org/10.1155/2013/375830.
A.W. Marczewski, Langmuir, 26, 15229 (2010); https://doi.org/10.1021/la1010049.
J.P.S. Valente, P.M. Padilha and A.O. Florentino, Chemosphere, 64, 1128 (2006); https://doi.org/10.1016/j.chemosphere.2005.11.050.