Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth, Linear and Non-Linear, Dielectrics, Microhardness, Refractive Index and Laser Damage Threshold Studies on Urea Phosphoric Acid Single Crystal
Corresponding Author(s) : D. Jayalakshmi
Asian Journal of Chemistry,
Vol. 29 No. 6 (2017): Vol 29 Issue 6
Abstract
An organic new non-linear optical urea phosphoric acid single crystal has been grown by slow evaporation technique. The cell parameters of urea phosphoric acid single crystal and crystalline perfection were confirmed by single and high resolution X-ray diffraction analyses. The presence of functional groups was identified by FT-IR spectral analysis. The UV-visible spectral studies showed that the urea phosphoric acid crystal has wide transmission in the entire visible region. The dielectric property of urea phosphoric acid crystal revealed the normal dielectric behaviour. Mechanical strength of urea phosphoric acid crystal was studied. The refractive index of urea phosphoric acid crystal was also measured. The laser damage threshold value of urea phosphoric acid crystal was found by Nd:YAG laser. The photoconductivity studies were taken. The second order non-linear coefficient of the grown crystal was also measured for urea phosphoric acid single crystal.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Badan, R. Hierle, A. Perigand and J. Zyss, in ed: D.J. Williams, Nonlinear Optical Properties of Organic Molecules and Polymeric Materials, American Chemical Society, Symposium Series, Washington, DC, D.5, p. 233 (1993).
- D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1, Academic Press, London (1987).
- R.W. Munn and C.N. Ironside, Principles and Applications of Nonlinear Optical Materials, Chapman and Hall, London (1993).
- S.R. Marder, J.W. Perry and W.P. Schaefer, Science, 245, 626 (1989); https://doi.org/10.1126/science.245.4918.626.
- S.R. Marder, J.W. Perry and W.P. Schaefer, J. Mater. Chem., 2, 985 (1992); https://doi.org/10.1039/JM9920200985.
- S.A. Martin Britto Dhas, M. Suresh, G. Bhagavannarayana and S. Natarajan, J. Cryst. Growth, 309, 48 (2007); https://doi.org/10.1016/j.jcrysgro.2007.09.008.
- G. Smith and U.D. Wermuth, Acta Crystallogr. C, 66, o5 (2010); https://doi.org/10.1107/S0108270109049154.
- A. Ashour, N. El-Kadry and S.A. Mahmoud, Thin Solid Films, 269, 117 (1995); https://doi.org/10.1016/0040-6090(95)06868-6.
- J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, B Basic Res., 15, 627 (1966); https://doi.org/10.1002/pssb.19660150224.
- V. Gupta and A. Mansingh, J. Appl. Phys., 80, 1063 (1996); https://doi.org/10.1063/1.362842.
- M.A. Gaffar, A.A. El-Fadl and S.B. Anooz, Physica B, 327, 43 (2003); https://doi.org/10.1016/S0921-4526(02)01700-3.
- C. Miller, Appl. Phys. Lett., 5, 17 (1964); https://doi.org/10.1063/1.1754022.
- C. Balarew and R. Duhlev, J. Solid State Chem., 55, 1 (1984); https://doi.org/10.1016/0022-4596(84)90240-8.
- E.M. Onitsch, Mikroskopie, 95, 12 (1950).
- P.V. Dhanaraj and N.P. Rajesh, Physica B, 406, 12 (2011); https://doi.org/10.1016/j.physb.2010.09.041.
- G.C. Bhar, A.K. Chaudhary and P. Kumbhakar, Appl. Surf. Sci., 161, 155 (2000); https://doi.org/10.1016/S0169-4332(00)00276-2.
- N.L. Boling, M.D. Crisp and G. Dube, Appl. Opt., 12, 650 (1973); https://doi.org/10.1364/AO.12.000650.
- N. Vijayan, G. Bhagavannarayana, T. Kanagasekaran, R.R. Babu, R. Gopalakrishnan and P. Ramasamy, Cryst. Res. Technol., 41, 784 (2006); https://doi.org/10.1002/crat.200510669.
- S.A.M. Britto Dhas and S. Natarajan, Cryst. Res. Technol., 42, 471 (2007); https://doi.org/10.1002/crat.200610850.
- R.H. Bube, Photoconductivity of Solids, Wiley, New York (1981).
- S. Pandi and D. Jayaraman, Mater. Chem. Phys., 71, 314 (2001); https://doi.org/10.1016/S0254-0584(01)00285-1.
- V.N. Joshi, Photoconductivity, Marcel Dekker, New York (1990).
References
J. Badan, R. Hierle, A. Perigand and J. Zyss, in ed: D.J. Williams, Nonlinear Optical Properties of Organic Molecules and Polymeric Materials, American Chemical Society, Symposium Series, Washington, DC, D.5, p. 233 (1993).
D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1, Academic Press, London (1987).
R.W. Munn and C.N. Ironside, Principles and Applications of Nonlinear Optical Materials, Chapman and Hall, London (1993).
S.R. Marder, J.W. Perry and W.P. Schaefer, Science, 245, 626 (1989); https://doi.org/10.1126/science.245.4918.626.
S.R. Marder, J.W. Perry and W.P. Schaefer, J. Mater. Chem., 2, 985 (1992); https://doi.org/10.1039/JM9920200985.
S.A. Martin Britto Dhas, M. Suresh, G. Bhagavannarayana and S. Natarajan, J. Cryst. Growth, 309, 48 (2007); https://doi.org/10.1016/j.jcrysgro.2007.09.008.
G. Smith and U.D. Wermuth, Acta Crystallogr. C, 66, o5 (2010); https://doi.org/10.1107/S0108270109049154.
A. Ashour, N. El-Kadry and S.A. Mahmoud, Thin Solid Films, 269, 117 (1995); https://doi.org/10.1016/0040-6090(95)06868-6.
J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, B Basic Res., 15, 627 (1966); https://doi.org/10.1002/pssb.19660150224.
V. Gupta and A. Mansingh, J. Appl. Phys., 80, 1063 (1996); https://doi.org/10.1063/1.362842.
M.A. Gaffar, A.A. El-Fadl and S.B. Anooz, Physica B, 327, 43 (2003); https://doi.org/10.1016/S0921-4526(02)01700-3.
C. Miller, Appl. Phys. Lett., 5, 17 (1964); https://doi.org/10.1063/1.1754022.
C. Balarew and R. Duhlev, J. Solid State Chem., 55, 1 (1984); https://doi.org/10.1016/0022-4596(84)90240-8.
E.M. Onitsch, Mikroskopie, 95, 12 (1950).
P.V. Dhanaraj and N.P. Rajesh, Physica B, 406, 12 (2011); https://doi.org/10.1016/j.physb.2010.09.041.
G.C. Bhar, A.K. Chaudhary and P. Kumbhakar, Appl. Surf. Sci., 161, 155 (2000); https://doi.org/10.1016/S0169-4332(00)00276-2.
N.L. Boling, M.D. Crisp and G. Dube, Appl. Opt., 12, 650 (1973); https://doi.org/10.1364/AO.12.000650.
N. Vijayan, G. Bhagavannarayana, T. Kanagasekaran, R.R. Babu, R. Gopalakrishnan and P. Ramasamy, Cryst. Res. Technol., 41, 784 (2006); https://doi.org/10.1002/crat.200510669.
S.A.M. Britto Dhas and S. Natarajan, Cryst. Res. Technol., 42, 471 (2007); https://doi.org/10.1002/crat.200610850.
R.H. Bube, Photoconductivity of Solids, Wiley, New York (1981).
S. Pandi and D. Jayaraman, Mater. Chem. Phys., 71, 314 (2001); https://doi.org/10.1016/S0254-0584(01)00285-1.
V.N. Joshi, Photoconductivity, Marcel Dekker, New York (1990).