Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies on Synthetic, Structural Characterization, Thermal, DNA Cleavage, Antimicrobial and Catalytic Activity of Tetradentate (N4) Schiff Base and Its Transition Transition Metal Complexes
Corresponding Author(s) : A.K. Ibrahim Sheriff
Asian Journal of Chemistry,
Vol. 29 No. 5 (2017): Vol 29 Issue 5
Abstract
A novel tetradentate chelate was synthesized by the condensation of cinnamaldehyde and triethylenetetramine. The chelate ligand was used to prepare mononuclear transition metal complexes of Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) ions. They were charactertized by elemental analyses, conductivity studies, magenetic properties, infrared spectra, UV-visble spectra, 1H NMR and 13C NMR spectra, electron spin resonance spectra, mass spectra and thermogram studies. Their ligand field parameters and LFSE have also been determind. Kinetic studies on the hydrolysis of ethyl acetate have been studied using Co(II) and Ni(II) complexes as homogeneous catalysts and oxidation of pyrocatechol to o-quinone using Co(II), Ni(II) and Cu(II) complexes. The deoxyribonucleic acid cleavage activities of pUC19 DNA examined against chelate ligand and its metal complexes have been evaluated by agarose gel electrophoreises method in the presence of H2O2. The antimicrobial studies of Schiff base and its metal complexes were tested against the fungi Candida albicans and Aspergillus niger and bacteria Escherichia coli, Staphylococcus aureus and Bacillus cereus.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Alexander, Chem. Rev., 95, 273 (1995); https://doi.org/10.1021/cr00034a002.
- P. Domadia, S. Swarup, A. Bhunia, J. Sivaraman and D. Dasgupta, Biochem. Pharmacol., 74, 831 (2007); https://doi.org/10.1016/j.bcp.2007.06.029.
- J. Selbin, J. Coord. Chem. Rev., 1, 293 (1966); https://doi.org/10.1016/S0010-8545(00)80142-3.
- S. Beniz Gündüz, E. Maltas and S. Yildiz, Anal. Lett., 43, 2392 (2010); https://doi.org/10.1080/00032711003763673.
- F. Rahaman, B. Hiremath, S.M. Basavarajaish, B.H.M. Jayakumaraswamy and B.H.M. Mruthyunjayaswamy, J. Indian Chem. Soc., 85, 381 (2008).
- E. Fujita, B.S. Brunschwig, T. Ogata and S. Yanagida, Coord. Chem. Rev., 132, 195 (1994); https://doi.org/10.1016/0010-8545(94)80040-5.
- R. Than, A.A. Feldmann and B. Krebs, Coord. Chem. Rev., 182, 211 (1999); https://doi.org/10.1016/S0010-8545(98)00234-3.
- K. Hussain Reddy, M. Radhakrishna Reddy and K. Mohan Raju, Indian J. Chem., 38A, 299 (1999).
- M. Sarangapani and V.M. Reddy, Indian J. Pharm. Sci., 56, 174 (1994).
- H.T. Chifotides and K.R. Dunbar, Acc. Chem. Res., 38, 146 (2005); https://doi.org/10.1021/ar0302078.
- K. Samejima and W.C. Earnshaw, Nat. Rev. Mol. Cell Biol., 6, 677 (2005); https://doi.org/10.1038/nrm1715.
- N. Raman, R. Jeyamurugan, R. Senthilkumar, B. Rajkapoor and S.G. Franzblau, Eur. J. Med. Chem., 45, 5438 (2010); https://doi.org/10.1016/j.ejmech.2010.09.004.
- N.S. Venkataramanan, G. Kuppuraj and S. Rajagopal, Coord. Chem. Rev., 249, 1249 (2005); https://doi.org/10.1016/j.ccr.2005.01.023.
- S.R. Gandhi, D.S. Kumar, R. Srinivasan and A.K.I. Sheriff, Asian J. Chem., 28, 1721 (2016); https://doi.org/10.14233/ajchem.2016.19800.
- B. Kersting and U. Lehmann, Adv. Inorg. Chem., 61, 407 (2009); https://doi.org/10.1016/S0898-8838(09)00207-4.
- M.N. Ibrahim, K.J. Hamad and S.H. Al-Joroshi, Asian J. Chem., 18, 2404 (2006).
- H.B. Silber and M.A. Murguia, Inorg. Chem., 24, 3794 (1985); https://doi.org/10.1021/ic00217a020.
- S.P. Walweakar and A.B. Halgeri, J. Indian Chem. Soc., 50, 246 (1973).
- A. Zerrouki, R. Touzani and S. El Kadiri, Arab. J. Chem., 4, 459 (2010); https://doi.org/10.1016/j.arabjc.2010.07.013.
- R.A. Sheldon and J.K. Kochi, Metal Catalyzed Oxidation of Organic Compounds, Academic Press, New York (1981).
- Y. Jin and J.A. Cowan, J. Am. Chem. Soc., 127, 8408 (2005); https://doi.org/10.1021/ja0503985.
- C. Jayabalakrishnan and K. Natarajan, Transition Met. Chem., 27, 75 (2002); https://doi.org/10.1023/A:1013437203247.
- C.J. Dhanaraj and M.S. Nair, Mycobiology, 36, 260 (2008); https://doi.org/10.4489/MYCO.2008.36.4.260.
- N. Singh, S. Hingorani, J. Srivastava, V. Puri and B.V. Agarwala, Synth. React. Inorg. Met.-Org. Chem., 22, 1283 (1992); https://doi.org/10.1080/15533179208017841.
- B.N. Figgis, Indroduction to Ligand Fields, Interscience, New York, (1966).
- A. Syamal, Asian J. Chem. Rev., 2, 79 (1991).
- K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley, New York, edn 5 (1997).
- F. Calderazzo, L. Labella and F. Marchetti, J. Chem. Soc., Dalton Trans., 9, 1485 (1998); https://doi.org/10.1039/a707623a.
- E. König, Struct. Bonding, 9, 175 (1971); https://doi.org/10.1007/BFb0118887.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, edn 2 (1984).
- M. Dolaz, M. Tümer and M. Digrak, Transition Met. Chem. 29, 528 (2004); https://doi.org/10.1023/B:TMCH.0000037520.05914.66.
- K. Krishnankutty and J. Michael, J. Coord. Chem., 22, 327 (1990); https://doi.org/10.1080/00958979009408232.
- B.J. Hathaway and A.A.G. Tomlinson, Coord. Chem. Rev., 5, 1 (1970); https://doi.org/10.1016/S0010-8545(00)80073-9.
- A. Syamal and M.M. Singh, Indian J. Chem., 31A, 110 (1992).
- P. Martin-Zarza, P. Gili, A. Mederos, A. Medina, C. Valenzuela and A. Bernalte, Thermochim. Acta, 155, 231 (1989); https://doi.org/10.1016/0040-6031(89)87190-4.
- S.S. Djebbar, B.O. Benali and J.P. Deloume, Polyhedron, 16, 2175 (1997); https://doi.org/10.1016/S0277-5387(96)00555-4.
- V.C. Haskell and L.P. Hammett, J. Am. Chem. Soc., 71, 1284 (1949); https://doi.org/10.1021/ja01172a040.
- S. Sreedaran, K. Shanmuga Bharathi, A. Kalilur Rahiman, K. Rajesh, G. Nirmala and V. Narayanan, J. Coord. Chem., 61, 3594 (2008); https://doi.org/10.1080/00958970802087425.
- V.K. Bhardwaj, N. Aliaga-Alcalde, M. Corbella and G. Hundal, Inorg. Chim. Acta, 363, 97 (2010); https://doi.org/10.1016/j.ica.2009.09.041.
- A. Sitlani, E.C. Long, A.M. Pyle and J.K. Barton, J. Am. Chem. Soc., 114, 2303 (1992); https://doi.org/10.1021/ja00033a003.
- K. Samejima and W.C. Earnshaw, Nat. Rev. Mol. Cell Biol., 6, 677 (2005); https://doi.org/10.1038/nrm1715.
- L. Mishra, A.K. Pandey and U.C. Agarwala, Indian J. Chem., 32A, 442 (1993).
- S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet and J.-P. Bouchara, J. Inorg. Biochem., 102, 63 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.001.
- B.G. Tweedy, Phytopathology, 155, 910 (1964).
References
V. Alexander, Chem. Rev., 95, 273 (1995); https://doi.org/10.1021/cr00034a002.
P. Domadia, S. Swarup, A. Bhunia, J. Sivaraman and D. Dasgupta, Biochem. Pharmacol., 74, 831 (2007); https://doi.org/10.1016/j.bcp.2007.06.029.
J. Selbin, J. Coord. Chem. Rev., 1, 293 (1966); https://doi.org/10.1016/S0010-8545(00)80142-3.
S. Beniz Gündüz, E. Maltas and S. Yildiz, Anal. Lett., 43, 2392 (2010); https://doi.org/10.1080/00032711003763673.
F. Rahaman, B. Hiremath, S.M. Basavarajaish, B.H.M. Jayakumaraswamy and B.H.M. Mruthyunjayaswamy, J. Indian Chem. Soc., 85, 381 (2008).
E. Fujita, B.S. Brunschwig, T. Ogata and S. Yanagida, Coord. Chem. Rev., 132, 195 (1994); https://doi.org/10.1016/0010-8545(94)80040-5.
R. Than, A.A. Feldmann and B. Krebs, Coord. Chem. Rev., 182, 211 (1999); https://doi.org/10.1016/S0010-8545(98)00234-3.
K. Hussain Reddy, M. Radhakrishna Reddy and K. Mohan Raju, Indian J. Chem., 38A, 299 (1999).
M. Sarangapani and V.M. Reddy, Indian J. Pharm. Sci., 56, 174 (1994).
H.T. Chifotides and K.R. Dunbar, Acc. Chem. Res., 38, 146 (2005); https://doi.org/10.1021/ar0302078.
K. Samejima and W.C. Earnshaw, Nat. Rev. Mol. Cell Biol., 6, 677 (2005); https://doi.org/10.1038/nrm1715.
N. Raman, R. Jeyamurugan, R. Senthilkumar, B. Rajkapoor and S.G. Franzblau, Eur. J. Med. Chem., 45, 5438 (2010); https://doi.org/10.1016/j.ejmech.2010.09.004.
N.S. Venkataramanan, G. Kuppuraj and S. Rajagopal, Coord. Chem. Rev., 249, 1249 (2005); https://doi.org/10.1016/j.ccr.2005.01.023.
S.R. Gandhi, D.S. Kumar, R. Srinivasan and A.K.I. Sheriff, Asian J. Chem., 28, 1721 (2016); https://doi.org/10.14233/ajchem.2016.19800.
B. Kersting and U. Lehmann, Adv. Inorg. Chem., 61, 407 (2009); https://doi.org/10.1016/S0898-8838(09)00207-4.
M.N. Ibrahim, K.J. Hamad and S.H. Al-Joroshi, Asian J. Chem., 18, 2404 (2006).
H.B. Silber and M.A. Murguia, Inorg. Chem., 24, 3794 (1985); https://doi.org/10.1021/ic00217a020.
S.P. Walweakar and A.B. Halgeri, J. Indian Chem. Soc., 50, 246 (1973).
A. Zerrouki, R. Touzani and S. El Kadiri, Arab. J. Chem., 4, 459 (2010); https://doi.org/10.1016/j.arabjc.2010.07.013.
R.A. Sheldon and J.K. Kochi, Metal Catalyzed Oxidation of Organic Compounds, Academic Press, New York (1981).
Y. Jin and J.A. Cowan, J. Am. Chem. Soc., 127, 8408 (2005); https://doi.org/10.1021/ja0503985.
C. Jayabalakrishnan and K. Natarajan, Transition Met. Chem., 27, 75 (2002); https://doi.org/10.1023/A:1013437203247.
C.J. Dhanaraj and M.S. Nair, Mycobiology, 36, 260 (2008); https://doi.org/10.4489/MYCO.2008.36.4.260.
N. Singh, S. Hingorani, J. Srivastava, V. Puri and B.V. Agarwala, Synth. React. Inorg. Met.-Org. Chem., 22, 1283 (1992); https://doi.org/10.1080/15533179208017841.
B.N. Figgis, Indroduction to Ligand Fields, Interscience, New York, (1966).
A. Syamal, Asian J. Chem. Rev., 2, 79 (1991).
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley, New York, edn 5 (1997).
F. Calderazzo, L. Labella and F. Marchetti, J. Chem. Soc., Dalton Trans., 9, 1485 (1998); https://doi.org/10.1039/a707623a.
E. König, Struct. Bonding, 9, 175 (1971); https://doi.org/10.1007/BFb0118887.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, edn 2 (1984).
M. Dolaz, M. Tümer and M. Digrak, Transition Met. Chem. 29, 528 (2004); https://doi.org/10.1023/B:TMCH.0000037520.05914.66.
K. Krishnankutty and J. Michael, J. Coord. Chem., 22, 327 (1990); https://doi.org/10.1080/00958979009408232.
B.J. Hathaway and A.A.G. Tomlinson, Coord. Chem. Rev., 5, 1 (1970); https://doi.org/10.1016/S0010-8545(00)80073-9.
A. Syamal and M.M. Singh, Indian J. Chem., 31A, 110 (1992).
P. Martin-Zarza, P. Gili, A. Mederos, A. Medina, C. Valenzuela and A. Bernalte, Thermochim. Acta, 155, 231 (1989); https://doi.org/10.1016/0040-6031(89)87190-4.
S.S. Djebbar, B.O. Benali and J.P. Deloume, Polyhedron, 16, 2175 (1997); https://doi.org/10.1016/S0277-5387(96)00555-4.
V.C. Haskell and L.P. Hammett, J. Am. Chem. Soc., 71, 1284 (1949); https://doi.org/10.1021/ja01172a040.
S. Sreedaran, K. Shanmuga Bharathi, A. Kalilur Rahiman, K. Rajesh, G. Nirmala and V. Narayanan, J. Coord. Chem., 61, 3594 (2008); https://doi.org/10.1080/00958970802087425.
V.K. Bhardwaj, N. Aliaga-Alcalde, M. Corbella and G. Hundal, Inorg. Chim. Acta, 363, 97 (2010); https://doi.org/10.1016/j.ica.2009.09.041.
A. Sitlani, E.C. Long, A.M. Pyle and J.K. Barton, J. Am. Chem. Soc., 114, 2303 (1992); https://doi.org/10.1021/ja00033a003.
K. Samejima and W.C. Earnshaw, Nat. Rev. Mol. Cell Biol., 6, 677 (2005); https://doi.org/10.1038/nrm1715.
L. Mishra, A.K. Pandey and U.C. Agarwala, Indian J. Chem., 32A, 442 (1993).
S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet and J.-P. Bouchara, J. Inorg. Biochem., 102, 63 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.001.
B.G. Tweedy, Phytopathology, 155, 910 (1964).