Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Binding Studies of Pectin in Presence of Divalent Cations
Corresponding Author(s) : Ajit K. Surabhi
Asian Journal of Chemistry,
Vol. 29 No. 5 (2017): Vol 29 Issue 5
Abstract
The absorption capacity of low methoxy hydrated and amidated pectins to various metal cations and their effects on rheological properties due to binding of metal cations were investigated. Individual and competitive binding experiments were carried out using low-methoxy hydrated and amidated pectin solutions contained in dialysis bags and using metal cation solutions as the dialyzate. Equilibration took up to 40 h. The metal ions bound were in the order Mn2+ > Fe2+ > Cu2+ > Ca2+ > Zn2+. Calcium binding experiments were undertaken at various pH levels in order to find out the optimum pH values for maximum binding, that for calcium being pH 5.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.N. Fissore, L. Matkovic, E. Wider, A.M. Rojas and L.N. Gerschenson, LWT-Food Sci. Technol., 42, 1413 (2009); https://doi.org/10.1016/j.lwt.2009.03.003.
- D. Lootens, F. Capel, D. Durand, T. Nicolai, P. Boulenguer and V. Langendorff, Food Hydrocoll., 17, 237 (2003); https://doi.org/10.1016/S0268-005X(02)00056-5.
- J.A. de Vries, F.M. Rombouts, A.G.J. Voragen and W. Pilnik, Carbohydr. Polym., 2, 25 (1982); https://doi.org/10.1016/0144-8617(82)90043-1.
- E. Miyoshi and K. Nishinari, Colloid Polym. Sci., 277, 727 (1999); https://doi.org/10.1007/s003960050446.
- S.M. Cardoso, M.A. Coimbra and J.A. Lopes da Silva, Food Hydrocoll., 17, 801 (2003); https://doi.org/10.1016/S0268-005X(03)00101-2.
- J. Gigli, C. Garnier and L. Piazza, Food Hydrocoll., 23, 1406 (2009); https://doi.org/10.1016/j.foodhyd.2008.09.015.
- B.R. Thakur, R.K. Singh, A. Handa and M.A. Rao, Crit. Rev. Food Sci. Nutr., 37, 47 (1997); https://doi.org/10.1080/10408399709527767.
- V.M. Dronnet, C.M.G.C. Renard, M.A.V. Axelos and J.F. Thibault, Carbohydr. Polym., 30, 253 (1996); https://doi.org/10.1016/S0144-8617(96)00107-5.
- M.T. Kartel, L.A. Kupchik and B.K. Veisov, Chemosphere, 38, 2591 (1999); https://doi.org/10.1016/S0045-6535(98)00466-4.
- B.M. Nair, N. Asp, M. Nyman and H. Persson, Food Chem., 23, 295 (1987); https://doi.org/10.1016/0308-8146(87)90115-4.
- C. Garnier, M.A.V. Axelos and J.F. Thibault, Carbohydr. Res., 240, 219 (1993); https://doi.org/10.1016/0008-6215(93)84185-9.
- C. Kyomugasho, S. Christiaens, D.V. de Walle, A.M. Van Loey and M.E. Hendrickx, Food Hydrocoll., 61, 172 (2016); https://doi.org/10.1016/j.foodhyd.2016.05.018.
- M. Torre, A.R. Rodriguez and F. Saura-Calixto, Food Chem., 54, 23 (1995); https://doi.org/10.1016/0308-8146(95)92658-7.
- U. Schlemmer, Food Chem., 32, 223 (1989); https://doi.org/10.1016/0308-8146(89)90051-4.
- C.K. Siew, P.A. Williams and N.W.G. Young, Biomacromolecules, 6, 963 (2005); https://doi.org/10.1021/bm049341l
References
E.N. Fissore, L. Matkovic, E. Wider, A.M. Rojas and L.N. Gerschenson, LWT-Food Sci. Technol., 42, 1413 (2009); https://doi.org/10.1016/j.lwt.2009.03.003.
D. Lootens, F. Capel, D. Durand, T. Nicolai, P. Boulenguer and V. Langendorff, Food Hydrocoll., 17, 237 (2003); https://doi.org/10.1016/S0268-005X(02)00056-5.
J.A. de Vries, F.M. Rombouts, A.G.J. Voragen and W. Pilnik, Carbohydr. Polym., 2, 25 (1982); https://doi.org/10.1016/0144-8617(82)90043-1.
E. Miyoshi and K. Nishinari, Colloid Polym. Sci., 277, 727 (1999); https://doi.org/10.1007/s003960050446.
S.M. Cardoso, M.A. Coimbra and J.A. Lopes da Silva, Food Hydrocoll., 17, 801 (2003); https://doi.org/10.1016/S0268-005X(03)00101-2.
J. Gigli, C. Garnier and L. Piazza, Food Hydrocoll., 23, 1406 (2009); https://doi.org/10.1016/j.foodhyd.2008.09.015.
B.R. Thakur, R.K. Singh, A. Handa and M.A. Rao, Crit. Rev. Food Sci. Nutr., 37, 47 (1997); https://doi.org/10.1080/10408399709527767.
V.M. Dronnet, C.M.G.C. Renard, M.A.V. Axelos and J.F. Thibault, Carbohydr. Polym., 30, 253 (1996); https://doi.org/10.1016/S0144-8617(96)00107-5.
M.T. Kartel, L.A. Kupchik and B.K. Veisov, Chemosphere, 38, 2591 (1999); https://doi.org/10.1016/S0045-6535(98)00466-4.
B.M. Nair, N. Asp, M. Nyman and H. Persson, Food Chem., 23, 295 (1987); https://doi.org/10.1016/0308-8146(87)90115-4.
C. Garnier, M.A.V. Axelos and J.F. Thibault, Carbohydr. Res., 240, 219 (1993); https://doi.org/10.1016/0008-6215(93)84185-9.
C. Kyomugasho, S. Christiaens, D.V. de Walle, A.M. Van Loey and M.E. Hendrickx, Food Hydrocoll., 61, 172 (2016); https://doi.org/10.1016/j.foodhyd.2016.05.018.
M. Torre, A.R. Rodriguez and F. Saura-Calixto, Food Chem., 54, 23 (1995); https://doi.org/10.1016/0308-8146(95)92658-7.
U. Schlemmer, Food Chem., 32, 223 (1989); https://doi.org/10.1016/0308-8146(89)90051-4.
C.K. Siew, P.A. Williams and N.W.G. Young, Biomacromolecules, 6, 963 (2005); https://doi.org/10.1021/bm049341l