Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermoacoustic Parameters Determination of Intermolecular Free-Length of 1-Butyl-2,3-dimethylimidazolium Chloride in Mixed Solvents at T = (298.15 to 313.15) K
Corresponding Author(s) : Priyaranjan Mohapatra
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
The intermolecular free-length of 1-butyl-2,3-dimethylimidazolium chloride [bdmim]Cl in pure water as well as in tetra-n-butyl ammonium bromide (TBAB) + water at different concentrations of solute and at T = (298.15 to 313.15) K have been evaluated by making use of ultrasonic and thermoacoustical parameters followed by a comparative study. To accomplish this objective, thermoacoustical parameters for the above said solutions have been calculated. These parameters have been used to determine intermolecular free-length (Lf) for the solutions under study. The values of Lf obtained by thermoacoustical approach were tallied with the values obtained by well-known ultrasonic method (Schaaffs method). To the best of our understanding, this study is an innovative attempt in the determination of inter-molecular free-length present in the investigated solutions by making use of ultrasonic approach.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.S. Nikam, V.M. Kapade and M. Hasan, J. Pure Appl. Ultrason., 22, 16 (2000).
- B. Nanda, Indian J. Pure Appl. Phys., 54, 471 (2016).
- J.D. Pandey, B.D. Bhatt and R. Dey, PhysChemComm, 5, 37 (2002); https://doi.org/10.1039/B109599D.
- J.D. Pandey, R. Dey and J. Chhabra, PhysChemComm, 6, 55 (2003); https://doi.org/10.1039/b307435h.
- J.D. Pandey, V. Sanguri, M.K. Yadev and A. Singh, Indian. J. Chem., 47A, 1020 (2008).
- V.A. Tabhane, S. Agarwal and M. Kalidoss, PhysChemLiq., 40, 39 (2002).
- G.V. Ramarao, A.V. Sarma, D. Ramachandran and C. Rambabu, Indian J. Pure Appl. Phys., 43, 602 (2005).
- K. Narendra, Ch. Srinivasu, S. Fakruddin and P. Narayanamurthy, J. Chem. Thermodyn., 43, 1604 (2011); https://doi.org/10.1016/j.jct.2011.05.018.
- B.K. Sharma, J. Acoust. Soc. Am., 73, 106 (1983); https://doi.org/10.1121/1.388842.
- V. Korolev, N.L. Smirnova and A.V. Kustov, Thermochim. Acta, 427, 43 (2005); https://doi.org/10.1016/j.tca.2004.08.012.
- D.V. Batov and D.V. Batov, Russ. Chem. Bull., 58, 765 (2009); https://doi.org/10.1007/s11172-009-0092-5.
- S. Jain and J.C. Ahluwalia, Thermochim. Acta, 302, 17 (1997); https://doi.org/10.1016/S0040-6031(97)00149-4.
- J. Mata, D. Varade, G. Ghosh and P. Bahadur, Colloids Surf. A Physico-chem. Eng. Asp., 245, 69 (2004); https://doi.org/10.1016/j.colsurfa.2004.07.009.
- G.R. Behbehani, J. Solution Chem., 36, 939 (2007); https://doi.org/10.1007/s10953-007-9164-z.
- W.Y. Wen, Water and Aqueous Solutions, Wiley: New York (1972).
- E.R. Nightingale Jr., J. Phys. Chem., 66, 894 (1962); https://doi.org/10.1021/j100811a032.
- H.S. Frank and W.Y. Wen, Discuss. Faraday Soc., 24, 133 (1957); https://doi.org/10.1039/df9572400133.
- H. Rueterjans, F. Schreiner, U. Sage and T. Ackermann, J. Phys. Chem., 73, 986 (1969); https://doi.org/10.1021/j100724a038.
- W.Y. Wen and S. Saito, J. Phys. Chem., 68, 2639 (1964); https://doi.org/10.1021/j100791a042.
- Y. Nagano, M. Sakiyama, T. Fujiwara and Y. Kondo, J. Phys. Chem., 92, 5823 (1988); https://doi.org/10.1021/j100331a054.
- S. Fukushima, H. Ogoshi and H. Ida, NKK Tech Rep., 166, 65 (1999) (In Japanese).
- H. Hooshyar and B. Khezri, Phys. Chem. Liq., 54, 663 (2016); https://doi.org/10.1080/00319104.2016.1140762.
- R.A. Daignault and E.L. Eliel, Org. Synth., 5, 303 (1973).
- J.D. Pandey, G.P. Dubey, R. Dey and S.N. Dubey, Acust. Acta Acust., 83, 90 (1997).
- B.B. Nanda, Rev. Pharm. Appl. Sci., 6, 1290 (2016).
- B.B. Nanda, B. Nanda and P.C. Mohanty, J. Mol. Liq., 171, 50 (2012); https://doi.org/10.1016/j.molliq.2012.03.011.
- S.R. Kanhekar, P. Pawar and G.K. Bichile, Indian J. Pure Appl. Phys., 48, 95 (2010).
- H.S. Frank and M.W. Evans, J. Chem. Phys., 13, 507 (1945); https://doi.org/10.1063/1.1723985.
References
P.S. Nikam, V.M. Kapade and M. Hasan, J. Pure Appl. Ultrason., 22, 16 (2000).
B. Nanda, Indian J. Pure Appl. Phys., 54, 471 (2016).
J.D. Pandey, B.D. Bhatt and R. Dey, PhysChemComm, 5, 37 (2002); https://doi.org/10.1039/B109599D.
J.D. Pandey, R. Dey and J. Chhabra, PhysChemComm, 6, 55 (2003); https://doi.org/10.1039/b307435h.
J.D. Pandey, V. Sanguri, M.K. Yadev and A. Singh, Indian. J. Chem., 47A, 1020 (2008).
V.A. Tabhane, S. Agarwal and M. Kalidoss, PhysChemLiq., 40, 39 (2002).
G.V. Ramarao, A.V. Sarma, D. Ramachandran and C. Rambabu, Indian J. Pure Appl. Phys., 43, 602 (2005).
K. Narendra, Ch. Srinivasu, S. Fakruddin and P. Narayanamurthy, J. Chem. Thermodyn., 43, 1604 (2011); https://doi.org/10.1016/j.jct.2011.05.018.
B.K. Sharma, J. Acoust. Soc. Am., 73, 106 (1983); https://doi.org/10.1121/1.388842.
V. Korolev, N.L. Smirnova and A.V. Kustov, Thermochim. Acta, 427, 43 (2005); https://doi.org/10.1016/j.tca.2004.08.012.
D.V. Batov and D.V. Batov, Russ. Chem. Bull., 58, 765 (2009); https://doi.org/10.1007/s11172-009-0092-5.
S. Jain and J.C. Ahluwalia, Thermochim. Acta, 302, 17 (1997); https://doi.org/10.1016/S0040-6031(97)00149-4.
J. Mata, D. Varade, G. Ghosh and P. Bahadur, Colloids Surf. A Physico-chem. Eng. Asp., 245, 69 (2004); https://doi.org/10.1016/j.colsurfa.2004.07.009.
G.R. Behbehani, J. Solution Chem., 36, 939 (2007); https://doi.org/10.1007/s10953-007-9164-z.
W.Y. Wen, Water and Aqueous Solutions, Wiley: New York (1972).
E.R. Nightingale Jr., J. Phys. Chem., 66, 894 (1962); https://doi.org/10.1021/j100811a032.
H.S. Frank and W.Y. Wen, Discuss. Faraday Soc., 24, 133 (1957); https://doi.org/10.1039/df9572400133.
H. Rueterjans, F. Schreiner, U. Sage and T. Ackermann, J. Phys. Chem., 73, 986 (1969); https://doi.org/10.1021/j100724a038.
W.Y. Wen and S. Saito, J. Phys. Chem., 68, 2639 (1964); https://doi.org/10.1021/j100791a042.
Y. Nagano, M. Sakiyama, T. Fujiwara and Y. Kondo, J. Phys. Chem., 92, 5823 (1988); https://doi.org/10.1021/j100331a054.
S. Fukushima, H. Ogoshi and H. Ida, NKK Tech Rep., 166, 65 (1999) (In Japanese).
H. Hooshyar and B. Khezri, Phys. Chem. Liq., 54, 663 (2016); https://doi.org/10.1080/00319104.2016.1140762.
R.A. Daignault and E.L. Eliel, Org. Synth., 5, 303 (1973).
J.D. Pandey, G.P. Dubey, R. Dey and S.N. Dubey, Acust. Acta Acust., 83, 90 (1997).
B.B. Nanda, Rev. Pharm. Appl. Sci., 6, 1290 (2016).
B.B. Nanda, B. Nanda and P.C. Mohanty, J. Mol. Liq., 171, 50 (2012); https://doi.org/10.1016/j.molliq.2012.03.011.
S.R. Kanhekar, P. Pawar and G.K. Bichile, Indian J. Pure Appl. Phys., 48, 95 (2010).
H.S. Frank and M.W. Evans, J. Chem. Phys., 13, 507 (1945); https://doi.org/10.1063/1.1723985.