Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation of Synergism in Sodium Tungstate/Sodium Silicate - (PA-Zn2+) System for Mitigating Mild Steel Corrosion in Industrial Cooling Water System
Corresponding Author(s) : Athira Krishnan
Asian Journal of Chemistry,
Vol. 29 No. 12 (2017): Vol 29 Issue 12
Abstract
Mild steel was extensively used in many industrial applications for the last few decades. Industries depend water particularly for cooling machines and other equipments to a temperature that allow manufacturing process to keep going, washing machineries etc. The dissolved oxygen present in water accelerates corrosion of steel equipments. Therefore it was absolutely needed to develop eco-friendly inhibitors having low cost and high efficiency in cooling water system that work even under accelerated conditions. Here we took PA-Zn2+ solution as the basic inhibitive system and then evaluated the role of different concentrations of sodium tungstate (ST) and sodium silicate (SS) in the optimum PA-Zn2+ combinations in neutral aqueous environment at normal as well as stimulated environment. Synergistic action of sodium tungstate and sodium silicate along with PA-Zn2+ system in the corrosion inhibition of mild steel was carried out by physico chemical and electro-chemical methods such as weight loss measurement, potentiodynamic polarization, open circuit potential measurement, electrochemical impedance spectroscopy etc. Based on the results of analysis we proposed a mechanism of passivation. 200 ppm sodium tungstate and 500 ppm sodium silicate exhibited optimum inhibitive action with 50 ppm phthalic acid - 60 ppm Zn2+ system and the values of efficiencies were found to be 99.04 and 96.1 % respectively. The composition of protective film was identified by IR spectroscopy and its homogenous nature was confirmed by the bode plots. The study confirmed that optimum combinations possessed excellent inhibitive power even under vigorous conditions and thereby proved the importance of PA+Zn2+-ST/SS as corrosion inhibitor and suitability to use in industrial cooling water system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Zucchi, G. Trabanelli and C. Monticelli, Corros. Sci., 38, 147 (1996); https://doi.org/10.1016/0010-938X(96)00121-7.
- N.C. Subramanyam, B.S. Sheshadri and S.M. Mayanna, Corros. Sci., 34, 563 (1993); https://doi.org/10.1016/0010-938X(93)90272-I.
- G.K. Gomma, Mater. Chem. Phys., 55, 235 (1998); https://doi.org/10.1016/S0254-0584(98)00043-1.
- F.C. Giacomelli, C. Giacomelli, M.F. Amadori, V. Schmidt and A. Spinelli, Mater. Chem. Phys., 83, 124 (2004); https://doi.org/10.1016/j.matchemphys.2003.09.013.
- R.K. Dinnappa and S.M. Mayanna, J. Appl. Electrochem., 11, 111 (1981); https://doi.org/10.1007/BF00615329.
- S. Bilgic, Mater. Chem. Phys., 76, 52 (2002); https://doi.org/10.1016/S0254-0584(01)00521-1.
- N. Hebbar, B.M. Praveen, B.M. Prasanna, T.V. Venkatesha and S.B. Abd Hamid, Procedia Mater. Sci., 5, 712 (2014); https://doi.org/10.1016/j.mspro.2014.07.319.
- J.W. Sahayaraj, A.J. Amalraj, S. Rajendran and N. Vijaya, E-J. Chem., 9, 1746 (2012); https://doi.org/10.1155/2012/368147.
- M. Manivannan and S. Rajendran, Int. J. Eng. Sci. Technol., 3, 8048 (2011).
- P.O. Ameh, P.U. Koha and N.O. Eddy, Chem. Sci. J., 6, 3 (2015); https://doi.org/10.4172/2150-3494.1000100.
- R. Mohan, S.K. Selvaraj,A. Sakthivel,A.J. Amalraj, J.W. Sahayaraj,A.P.P. Regis, C. Rajarathinam and G. Dhananjayan, Int. J. Eng. Res., 4, 22 (2014).
- S.M.A. Shibli and V.S. Saji, Corros. Sci., 47, 2213 (2005); https://doi.org/10.1016/j.corsci.2004.09.012.
- V.S. Saji and S.M.A. Shibli, Anti-Corros. Methods Mater., 49, 433 (2002); https://doi.org/10.1108/00035590210452789.
- S. Agnesia Kanimozhi and S. Rajendran, Int. J. Electrochem. Sci., 4, 353 (2009).
- B. Shyamala Devi and S. Rajendran, Int. J. Chem. Sci. Technol., 1, 79 (2011).
- M. Manivannan, S. Rajendran and A. Krishnaveni, Int. J. Eng. Sci. Technol., 1, 570 (2014).
- K.L. Prabha, J. Pharm. Sci., 3, 822 (2014).
- K.S. Beenakumari, Green Chem. Lett. Rev., 4, 117 (2011); https://doi.org/10.1080/17518253.2010.514866.
- K.S. Beenakumari, J. Ind. Pollut. Contr., 29, 213 (2013).
- M.G.S.R. Thomas, P.G. Bruce and J.B. Goodenough, J. Electrochem. Soc., 132, 1521 (1985); https://doi.org/10.1149/1.2114158.
- B. Balanaga Karthik, P. Selvakumar and C. Thangavelu, J. Chem. Sci., 3, 16 (2013).
- M. Manivannan and S. Rajendran, Res. J. Chem. Sci., 1, 42 (2011).
- A. Sahaya Raja, S. Rajendran, J. Sathiyabama and P. Angel, Int. J. Innov. Res. Sci. Eng. Technol, 3, 11455 (2014).
- J.K. Odusote, D.O. Owalude, S.J. Olusegun and R.A. Yahya, West Indian J. Eng., 38, 64 (2016).
- D.M. Bastidas, M. Criado, V.M. La Iglesia, S. Fajardo, A. La Iglesia and J.M. Bastidas, Cement Concr. Compos.,43, 31 (2013); https://doi.org/10.1016/j.cemconcomp.2013.06.005.
- K.K. Alaneme, S.J. Olusegun and O.T. Adelowo, Alexandria Eng. J., 55, 673 (2016); https://doi.org/10.1016/j.aej.2015.10.009.
- T. Ibrahim and M. Habbab, Int. J. Electrochem. Sci., 6, 6542 (2011).
References
F. Zucchi, G. Trabanelli and C. Monticelli, Corros. Sci., 38, 147 (1996); https://doi.org/10.1016/0010-938X(96)00121-7.
N.C. Subramanyam, B.S. Sheshadri and S.M. Mayanna, Corros. Sci., 34, 563 (1993); https://doi.org/10.1016/0010-938X(93)90272-I.
G.K. Gomma, Mater. Chem. Phys., 55, 235 (1998); https://doi.org/10.1016/S0254-0584(98)00043-1.
F.C. Giacomelli, C. Giacomelli, M.F. Amadori, V. Schmidt and A. Spinelli, Mater. Chem. Phys., 83, 124 (2004); https://doi.org/10.1016/j.matchemphys.2003.09.013.
R.K. Dinnappa and S.M. Mayanna, J. Appl. Electrochem., 11, 111 (1981); https://doi.org/10.1007/BF00615329.
S. Bilgic, Mater. Chem. Phys., 76, 52 (2002); https://doi.org/10.1016/S0254-0584(01)00521-1.
N. Hebbar, B.M. Praveen, B.M. Prasanna, T.V. Venkatesha and S.B. Abd Hamid, Procedia Mater. Sci., 5, 712 (2014); https://doi.org/10.1016/j.mspro.2014.07.319.
J.W. Sahayaraj, A.J. Amalraj, S. Rajendran and N. Vijaya, E-J. Chem., 9, 1746 (2012); https://doi.org/10.1155/2012/368147.
M. Manivannan and S. Rajendran, Int. J. Eng. Sci. Technol., 3, 8048 (2011).
P.O. Ameh, P.U. Koha and N.O. Eddy, Chem. Sci. J., 6, 3 (2015); https://doi.org/10.4172/2150-3494.1000100.
R. Mohan, S.K. Selvaraj,A. Sakthivel,A.J. Amalraj, J.W. Sahayaraj,A.P.P. Regis, C. Rajarathinam and G. Dhananjayan, Int. J. Eng. Res., 4, 22 (2014).
S.M.A. Shibli and V.S. Saji, Corros. Sci., 47, 2213 (2005); https://doi.org/10.1016/j.corsci.2004.09.012.
V.S. Saji and S.M.A. Shibli, Anti-Corros. Methods Mater., 49, 433 (2002); https://doi.org/10.1108/00035590210452789.
S. Agnesia Kanimozhi and S. Rajendran, Int. J. Electrochem. Sci., 4, 353 (2009).
B. Shyamala Devi and S. Rajendran, Int. J. Chem. Sci. Technol., 1, 79 (2011).
M. Manivannan, S. Rajendran and A. Krishnaveni, Int. J. Eng. Sci. Technol., 1, 570 (2014).
K.L. Prabha, J. Pharm. Sci., 3, 822 (2014).
K.S. Beenakumari, Green Chem. Lett. Rev., 4, 117 (2011); https://doi.org/10.1080/17518253.2010.514866.
K.S. Beenakumari, J. Ind. Pollut. Contr., 29, 213 (2013).
M.G.S.R. Thomas, P.G. Bruce and J.B. Goodenough, J. Electrochem. Soc., 132, 1521 (1985); https://doi.org/10.1149/1.2114158.
B. Balanaga Karthik, P. Selvakumar and C. Thangavelu, J. Chem. Sci., 3, 16 (2013).
M. Manivannan and S. Rajendran, Res. J. Chem. Sci., 1, 42 (2011).
A. Sahaya Raja, S. Rajendran, J. Sathiyabama and P. Angel, Int. J. Innov. Res. Sci. Eng. Technol, 3, 11455 (2014).
J.K. Odusote, D.O. Owalude, S.J. Olusegun and R.A. Yahya, West Indian J. Eng., 38, 64 (2016).
D.M. Bastidas, M. Criado, V.M. La Iglesia, S. Fajardo, A. La Iglesia and J.M. Bastidas, Cement Concr. Compos.,43, 31 (2013); https://doi.org/10.1016/j.cemconcomp.2013.06.005.
K.K. Alaneme, S.J. Olusegun and O.T. Adelowo, Alexandria Eng. J., 55, 673 (2016); https://doi.org/10.1016/j.aej.2015.10.009.
T. Ibrahim and M. Habbab, Int. J. Electrochem. Sci., 6, 6542 (2011).