Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Carbon Dioxide by Reusing Drinking Water Treatment Plant Sludge
Corresponding Author(s) : K.K. Ong
Asian Journal of Chemistry,
Vol. 29 No. 12 (2017): Vol 29 Issue 12
Abstract
Cost effective, easy to use and regenerate could be the desired properties of an adsorbent. Reusing of waste material as CO2 adsorbent can be a good alternative for solving the problem of waste disposal as well. Thus, in this study, aluminium-based drinking water treatment plant sludge as carbon dioxide adsorbent was reused. The sludge collected from a local drinking water treatment plant. It was dried and characterized using scanning electron microscope-energy disperse X-ray (SEM-EDX), Fourier transform infrared spectrometer (FTIR) and thermogravimetric analysis (TGA). Investigations of the effects of temperature, flow rate, concentration of CO2 and adsorbent dosage on CO2 adsorption capacity were performed using a fixed bed column at a pressure of 1 bar. The maximum capacity of 32.56 mg/g was found which was higher than that of some reported adsorbents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Auta and B.H. Hameed, Chem. Eng. J., 253, 350 (2014); https://doi.org/10.1016/j.cej.2014.05.018.
- M.E. Marcano-González, J.N. Primera-Pedrozo, Z. Jiménez-Laureano, R. Fu and A.J. Hernández-Maldonado, J. Mater. Sci., 48, 2053 (2013); https://doi.org/10.1007/s10853-012-6978-x.
- A.E. Creamer, B. Gao and M. Zhang, Chem. Eng. J., 249, 174 (2014); https://doi.org/10.1016/j.cej.2014.03.105.
- http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global_data.
- Y. Peng, B. Zhao and L. Li, Energy Procedia, 14, 1515 (2012); https://doi.org/10.1016/j.egypro.2011.12.1126.
- D.Y. Kim, H.M. Lee, S.K. Min, Y. Cho, I.C. Hwang, K. Han, J.Y. Kim and K.S. Kim, J. Phys. Chem. Lett., 2, 689 (2011); https://doi.org/10.1021/jz200095j.
- M. Rezaei, A.F. Ismail, G. Bakeri, S.A. Hashemifard and T. Matsuura, Chem. Eng. J., 260, 875 (2015); https://doi.org/10.1016/j.cej.2014.09.027.
- J. Huang, J. Zou and W.S.W. Ho, Ind. Eng. Chem. Res., 47, 1261 (2008); https://doi.org/10.1021/ie070794r.
- N. Jusoh, K.K. Lau, A.M. Shariff and Y.F. Yeong, Int. J. Greenhouse Gas Control, 22, 213 (2014); https://doi.org/10.1016/j.ijggc.2014.01.001.
- C.F. Song, Y. Kitamura, S.H. Li and W.Z. Jiang, Int. J. Greenhouse Gas Control, 13, 26 (2013); https://doi.org/10.1016/j.ijggc.2012.12.011.
- C. Chen, D.W. Park and W.S. Ahn, Appl. Surf. Sci., 292, 63 (2014); https://doi.org/10.1016/j.apsusc.2013.11.064.
- Z. Zhang, H. Wang, X. Chen, R. Xie, P. Gao, W. Wei and Y. Sun, Adsorption, 20, 883 (2014); https://doi.org/10.1007/s10450-014-9630-z.
- E. Vilarrasa-Garcia, J.A. Cecilia, S.M.L. Santos Jr., C.L. Cavalcante Jr., J. Jiménez-Jiménez, D.C.S. Azevedo and E. Rodríguez-Castellón, Micropor. Mesopor. Mater., 187, 125 (2014); https://doi.org/10.1016/j.micromeso.2013.12.023.
- N.P. Wickramaratne and M. Jaroniec, Appl. Mater. Interfaces, 5, 1849 (2013); https://doi.org/10.1021/am400112m.
- M.R. Quddus, M.B.I. Chowdhury and H.I. de Lasa, Chem. Eng. J., 260, 347 (2015); https://doi.org/10.1016/j.cej.2014.08.055.
- S. Chowdhury, G.K. Parshetti and R. Balasubramanian, Chem. Eng. J., 263, 374 (2015); https://doi.org/10.1016/j.cej.2014.11.037.
- R. Kishor and A.K. Ghoshal, Chem. Eng. J., 262, 882 (2015); https://doi.org/10.1016/j.cej.2014.10.039.
- J. Kalyanaraman, Y. Fan, R.P. Lively, W.J. Koros, C.W. Jones, M.J. Realff and Y. Kawajiri, Chem. Eng. J., 259, 737 (2015); https://doi.org/10.1016/j.cej.2014.08.023.
- R. Chatti,A.K. Bansiwal, J.A. Thote, V. Kumar, P. Jadhav, S.K. Lokhande, R.B. Biniwale, N.K. Labhsetwar and S.S. Rayalu, Micropor. Mesopor. Mater., 121, 84 (2009); https://doi.org/10.1016/j.micromeso.2009.01.007.
- A. Zukal, J. Pastva and J. Èejka, Micropor. Mesopor. Mater., 167, 44 (2013); https://doi.org/10.1016/j.micromeso.2012.05.026.
- S.T. Yang, J. Kim and W.S. Ahn,Micropor. Mesopor. Mater., 135, 90 (2010); https://doi.org/10.1016/j.micromeso.2010.06.015.
- O. Cheung, Z. Bacsik, Q. Liu, A. Mace and N. Hedin, Appl. Energy, 112, 1326 (2013); https://doi.org/10.1016/j.apenergy.2013.01.017.
- W.J. Son, J.S. Choi and W.S. Ahn, Micropor. Mesopor. Mater., 113, 31 (2008); https://doi.org/10.1016/j.micromeso.2007.10.049.
- O.G. Nik, X.Y. Chen and S. Kaliaguine, J. Membr. Sci., 413-414, 48 (2012); https://doi.org/10.1016/j.memsci.2012.04.003.
- Z. Bao, L. Yu, Q. Ren, X. Lu and S. Deng, J. Colloid Interface Sci., 353, 549 (2011); https://doi.org/10.1016/j.jcis.2010.09.065.
- H.R. Abid, J. Shang, H.M. Ang and S. Wang, Int. J. Smart Nano Mater., 4, 72 (2013); https://doi.org/10.1080/19475411.2012.688773.
- E.L.G. Oliveira, C.A. Grande and A.E. Rodrigues, Sep. Purif. Technol., 62, 137 (2008); https://doi.org/10.1016/j.seppur.2008.01.011.
- N. Florin and P. Fennell, Energy Procedia, 4, 830 (2011); https://doi.org/10.1016/j.egypro.2011.01.126.
- H. An, B. Feng and S. Su, Carbon, 47, 2396 (2009); https://doi.org/10.1016/j.carbon.2009.04.029.
- H. An, B. Feng and S. Su, Fuel, 103, 80 (2013); https://doi.org/10.1016/j.fuel.2011.06.076.
- C. Wang and Y. Pei, Chemosphere, 88, 1178 (2012); https://doi.org/10.1016/j.chemosphere.2012.03.065.
- Z. Li, N. Jiang, F. Wu and Z. Zhou, Ecol. Eng., 53, 165 (2013); https://doi.org/10.1016/j.ecoleng.2012.12.038.
- A.T. Nair and M.M. Ahammed, J. Clean. Prod., 96, 272 (2015); https://doi.org/10.1016/j.jclepro.2013.12.037.
- H.M. Owaid, R. Hamid, S.R.S. Abdullah, N.T. Kofli and M.R. Taha, Jurnal Teknologi (Sci. Eng.), 65, 105 (2013).
- D. Sirisha, K. Mukkanti and N. Gandhi, Adv. Appl. Sci. Res., 3, 3362 (2012).
- A.O. Babatunde and Y.Q. Zhao, J. Hazard. Mater., 184, 746 (2010); https://doi.org/10.1016/j.jhazmat.2010.08.102.
- Y.Q. Zhao, A.O. Babatunde, X.H. Zhao and W.C. Li, J. Environ. Sci. Health A, 44, 827 (2009); https://doi.org/10.1080/10934520902928685.
- P.R. Díaz-Herrera, M.J. Ramírez-Moreno and H. Pfeiffer, Chem. Eng. J., 264, 10 (2015); https://doi.org/10.1016/j.cej.2014.11.057.
- Y.Q. Zhao and Y. Yang, J. Environ. Sci. Health A, 45, 1234 (2010); https://doi.org/10.1080/10934529.2010.493794.
- S. Sadri Moghaddam, M.R. Alavi Moghaddam and M. Arami, J. Environ. Manage., 92, 1284 (2011); https://doi.org/10.1016/j.jenvman.2010.12.015.
- A. Mittal,A. Malviya, D. Kaur, J. Mittal and L. Kurup, J. Hazard. Mater., 148, 229 (2007); https://doi.org/10.1016/j.jhazmat.2007.02.028.
- J.A. Ippolito, K.G. Scheckel and K.A. Barbarick, J. Colloid Interface Sci., 338, 48 (2009); https://doi.org/10.1016/j.jcis.2009.06.023.
- J.F. Fu, Y.Q. Zhao, M. Razali and M. Bruen, J. Environ. Sci. Health A, 43, 1100 (2008); https://doi.org/10.1080/10934520802060159.
- M. Razali, Y.Q. Zhao and M. Bruen, Sep. Purif. Technol., 55, 300 (2007); https://doi.org/10.1016/j.seppur.2006.12.004.
- E.R. Monazam, J. Spenik and L.J. Shadle, Chem. Eng. J., 223, 795 (2013); https://doi.org/10.1016/j.cej.2013.02.041.
- N.V. Anyakora, C.S. Ajinomoh, A.S. Ahmed, I.A. Mohammed-Dabo, J. Ibrahim and J.B. Anto, World J. Eng. Pure Appl. Sci., 2, 161 (2012).
- C.H. Wang, S.J. Gao, T.X. Wang, B.H. Tian and Y.S. Pei, Chem. Eng. J., 172, 885 (2011); https://doi.org/10.1016/j.cej.2011.06.078.
- H.H.M. Mahmoud, Heritage Sci., 2, 18 (2014); https://doi.org/10.1186/s40494-014-0018-x.
- S. Music, N. Filipovic-Vincekovic and L. Sekovanic, Braz. J. Chem. Eng., 28, 89 (2011); https://doi.org/10.1590/S0104-66322011000100011.
- Y.P. Peña and W. Rondón, Am. J. Anal. Chem., 4, 387 (2013); https://doi.org/10.4236/ajac.2013.48049.
- M.Y. Soleha, K.K. Ong, W.Y. Wan Md Zin, A. Mansor, F. Anwar, I.N. Azowa, S.A.S.M. Shafiq, A.S.N. Aisyah, A. Aidy, K.A. Ku Zarina and C.C. Teoh, Key Eng. Mater., 701, 138 (2016); https://doi.org/10.4028/www.scientific.net/KEM.701.138.
- N. Brown and N. Putz, Process for the Production of Aluminum Hydroxide of Improved Thermal Stability, US Patent 2003/0049198 A1 (2003).
- C.P. Jaroniec, R.K. Gilpin and M. Jaroniec, J. Phys. Chem. B, 101, 6861 (1997); https://doi.org/10.1021/jp964002a.
- L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. Xiao, W. Wei and Y. Sun, Energy Fuels, 24, 5773 (2010); https://doi.org/10.1021/ef100817f.
- C.H. Lee, S.W. Park and S.S. Kim, Korean J. Chem. Eng., 31, 179 (2014); https://doi.org/10.1007/s11814-013-0281-7.
- M. Auta, N.D.A. Darbis, A.T.M. Din and B.H. Hameed, Chem. Eng. J., 233, 80 (2013); https://doi.org/10.1016/j.cej.2013.08.012.
- C. Goel, H. Bhunia and P.K. Bajpai, J. Environ. Chem. Eng., 4, 346 (2016); https://doi.org/10.1016/j.jece.2015.11.017.
- S.N. Kim, Y.R. Lee, S.H. Hong, M.S. Jang and W.S. Ahn, Catal. Today, 245, 54 (2015); https://doi.org/10.1016/j.cattod.2014.05.041.
References
M. Auta and B.H. Hameed, Chem. Eng. J., 253, 350 (2014); https://doi.org/10.1016/j.cej.2014.05.018.
M.E. Marcano-González, J.N. Primera-Pedrozo, Z. Jiménez-Laureano, R. Fu and A.J. Hernández-Maldonado, J. Mater. Sci., 48, 2053 (2013); https://doi.org/10.1007/s10853-012-6978-x.
A.E. Creamer, B. Gao and M. Zhang, Chem. Eng. J., 249, 174 (2014); https://doi.org/10.1016/j.cej.2014.03.105.
http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global_data.
Y. Peng, B. Zhao and L. Li, Energy Procedia, 14, 1515 (2012); https://doi.org/10.1016/j.egypro.2011.12.1126.
D.Y. Kim, H.M. Lee, S.K. Min, Y. Cho, I.C. Hwang, K. Han, J.Y. Kim and K.S. Kim, J. Phys. Chem. Lett., 2, 689 (2011); https://doi.org/10.1021/jz200095j.
M. Rezaei, A.F. Ismail, G. Bakeri, S.A. Hashemifard and T. Matsuura, Chem. Eng. J., 260, 875 (2015); https://doi.org/10.1016/j.cej.2014.09.027.
J. Huang, J. Zou and W.S.W. Ho, Ind. Eng. Chem. Res., 47, 1261 (2008); https://doi.org/10.1021/ie070794r.
N. Jusoh, K.K. Lau, A.M. Shariff and Y.F. Yeong, Int. J. Greenhouse Gas Control, 22, 213 (2014); https://doi.org/10.1016/j.ijggc.2014.01.001.
C.F. Song, Y. Kitamura, S.H. Li and W.Z. Jiang, Int. J. Greenhouse Gas Control, 13, 26 (2013); https://doi.org/10.1016/j.ijggc.2012.12.011.
C. Chen, D.W. Park and W.S. Ahn, Appl. Surf. Sci., 292, 63 (2014); https://doi.org/10.1016/j.apsusc.2013.11.064.
Z. Zhang, H. Wang, X. Chen, R. Xie, P. Gao, W. Wei and Y. Sun, Adsorption, 20, 883 (2014); https://doi.org/10.1007/s10450-014-9630-z.
E. Vilarrasa-Garcia, J.A. Cecilia, S.M.L. Santos Jr., C.L. Cavalcante Jr., J. Jiménez-Jiménez, D.C.S. Azevedo and E. Rodríguez-Castellón, Micropor. Mesopor. Mater., 187, 125 (2014); https://doi.org/10.1016/j.micromeso.2013.12.023.
N.P. Wickramaratne and M. Jaroniec, Appl. Mater. Interfaces, 5, 1849 (2013); https://doi.org/10.1021/am400112m.
M.R. Quddus, M.B.I. Chowdhury and H.I. de Lasa, Chem. Eng. J., 260, 347 (2015); https://doi.org/10.1016/j.cej.2014.08.055.
S. Chowdhury, G.K. Parshetti and R. Balasubramanian, Chem. Eng. J., 263, 374 (2015); https://doi.org/10.1016/j.cej.2014.11.037.
R. Kishor and A.K. Ghoshal, Chem. Eng. J., 262, 882 (2015); https://doi.org/10.1016/j.cej.2014.10.039.
J. Kalyanaraman, Y. Fan, R.P. Lively, W.J. Koros, C.W. Jones, M.J. Realff and Y. Kawajiri, Chem. Eng. J., 259, 737 (2015); https://doi.org/10.1016/j.cej.2014.08.023.
R. Chatti,A.K. Bansiwal, J.A. Thote, V. Kumar, P. Jadhav, S.K. Lokhande, R.B. Biniwale, N.K. Labhsetwar and S.S. Rayalu, Micropor. Mesopor. Mater., 121, 84 (2009); https://doi.org/10.1016/j.micromeso.2009.01.007.
A. Zukal, J. Pastva and J. Èejka, Micropor. Mesopor. Mater., 167, 44 (2013); https://doi.org/10.1016/j.micromeso.2012.05.026.
S.T. Yang, J. Kim and W.S. Ahn,Micropor. Mesopor. Mater., 135, 90 (2010); https://doi.org/10.1016/j.micromeso.2010.06.015.
O. Cheung, Z. Bacsik, Q. Liu, A. Mace and N. Hedin, Appl. Energy, 112, 1326 (2013); https://doi.org/10.1016/j.apenergy.2013.01.017.
W.J. Son, J.S. Choi and W.S. Ahn, Micropor. Mesopor. Mater., 113, 31 (2008); https://doi.org/10.1016/j.micromeso.2007.10.049.
O.G. Nik, X.Y. Chen and S. Kaliaguine, J. Membr. Sci., 413-414, 48 (2012); https://doi.org/10.1016/j.memsci.2012.04.003.
Z. Bao, L. Yu, Q. Ren, X. Lu and S. Deng, J. Colloid Interface Sci., 353, 549 (2011); https://doi.org/10.1016/j.jcis.2010.09.065.
H.R. Abid, J. Shang, H.M. Ang and S. Wang, Int. J. Smart Nano Mater., 4, 72 (2013); https://doi.org/10.1080/19475411.2012.688773.
E.L.G. Oliveira, C.A. Grande and A.E. Rodrigues, Sep. Purif. Technol., 62, 137 (2008); https://doi.org/10.1016/j.seppur.2008.01.011.
N. Florin and P. Fennell, Energy Procedia, 4, 830 (2011); https://doi.org/10.1016/j.egypro.2011.01.126.
H. An, B. Feng and S. Su, Carbon, 47, 2396 (2009); https://doi.org/10.1016/j.carbon.2009.04.029.
H. An, B. Feng and S. Su, Fuel, 103, 80 (2013); https://doi.org/10.1016/j.fuel.2011.06.076.
C. Wang and Y. Pei, Chemosphere, 88, 1178 (2012); https://doi.org/10.1016/j.chemosphere.2012.03.065.
Z. Li, N. Jiang, F. Wu and Z. Zhou, Ecol. Eng., 53, 165 (2013); https://doi.org/10.1016/j.ecoleng.2012.12.038.
A.T. Nair and M.M. Ahammed, J. Clean. Prod., 96, 272 (2015); https://doi.org/10.1016/j.jclepro.2013.12.037.
H.M. Owaid, R. Hamid, S.R.S. Abdullah, N.T. Kofli and M.R. Taha, Jurnal Teknologi (Sci. Eng.), 65, 105 (2013).
D. Sirisha, K. Mukkanti and N. Gandhi, Adv. Appl. Sci. Res., 3, 3362 (2012).
A.O. Babatunde and Y.Q. Zhao, J. Hazard. Mater., 184, 746 (2010); https://doi.org/10.1016/j.jhazmat.2010.08.102.
Y.Q. Zhao, A.O. Babatunde, X.H. Zhao and W.C. Li, J. Environ. Sci. Health A, 44, 827 (2009); https://doi.org/10.1080/10934520902928685.
P.R. Díaz-Herrera, M.J. Ramírez-Moreno and H. Pfeiffer, Chem. Eng. J., 264, 10 (2015); https://doi.org/10.1016/j.cej.2014.11.057.
Y.Q. Zhao and Y. Yang, J. Environ. Sci. Health A, 45, 1234 (2010); https://doi.org/10.1080/10934529.2010.493794.
S. Sadri Moghaddam, M.R. Alavi Moghaddam and M. Arami, J. Environ. Manage., 92, 1284 (2011); https://doi.org/10.1016/j.jenvman.2010.12.015.
A. Mittal,A. Malviya, D. Kaur, J. Mittal and L. Kurup, J. Hazard. Mater., 148, 229 (2007); https://doi.org/10.1016/j.jhazmat.2007.02.028.
J.A. Ippolito, K.G. Scheckel and K.A. Barbarick, J. Colloid Interface Sci., 338, 48 (2009); https://doi.org/10.1016/j.jcis.2009.06.023.
J.F. Fu, Y.Q. Zhao, M. Razali and M. Bruen, J. Environ. Sci. Health A, 43, 1100 (2008); https://doi.org/10.1080/10934520802060159.
M. Razali, Y.Q. Zhao and M. Bruen, Sep. Purif. Technol., 55, 300 (2007); https://doi.org/10.1016/j.seppur.2006.12.004.
E.R. Monazam, J. Spenik and L.J. Shadle, Chem. Eng. J., 223, 795 (2013); https://doi.org/10.1016/j.cej.2013.02.041.
N.V. Anyakora, C.S. Ajinomoh, A.S. Ahmed, I.A. Mohammed-Dabo, J. Ibrahim and J.B. Anto, World J. Eng. Pure Appl. Sci., 2, 161 (2012).
C.H. Wang, S.J. Gao, T.X. Wang, B.H. Tian and Y.S. Pei, Chem. Eng. J., 172, 885 (2011); https://doi.org/10.1016/j.cej.2011.06.078.
H.H.M. Mahmoud, Heritage Sci., 2, 18 (2014); https://doi.org/10.1186/s40494-014-0018-x.
S. Music, N. Filipovic-Vincekovic and L. Sekovanic, Braz. J. Chem. Eng., 28, 89 (2011); https://doi.org/10.1590/S0104-66322011000100011.
Y.P. Peña and W. Rondón, Am. J. Anal. Chem., 4, 387 (2013); https://doi.org/10.4236/ajac.2013.48049.
M.Y. Soleha, K.K. Ong, W.Y. Wan Md Zin, A. Mansor, F. Anwar, I.N. Azowa, S.A.S.M. Shafiq, A.S.N. Aisyah, A. Aidy, K.A. Ku Zarina and C.C. Teoh, Key Eng. Mater., 701, 138 (2016); https://doi.org/10.4028/www.scientific.net/KEM.701.138.
N. Brown and N. Putz, Process for the Production of Aluminum Hydroxide of Improved Thermal Stability, US Patent 2003/0049198 A1 (2003).
C.P. Jaroniec, R.K. Gilpin and M. Jaroniec, J. Phys. Chem. B, 101, 6861 (1997); https://doi.org/10.1021/jp964002a.
L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. Xiao, W. Wei and Y. Sun, Energy Fuels, 24, 5773 (2010); https://doi.org/10.1021/ef100817f.
C.H. Lee, S.W. Park and S.S. Kim, Korean J. Chem. Eng., 31, 179 (2014); https://doi.org/10.1007/s11814-013-0281-7.
M. Auta, N.D.A. Darbis, A.T.M. Din and B.H. Hameed, Chem. Eng. J., 233, 80 (2013); https://doi.org/10.1016/j.cej.2013.08.012.
C. Goel, H. Bhunia and P.K. Bajpai, J. Environ. Chem. Eng., 4, 346 (2016); https://doi.org/10.1016/j.jece.2015.11.017.
S.N. Kim, Y.R. Lee, S.H. Hong, M.S. Jang and W.S. Ahn, Catal. Today, 245, 54 (2015); https://doi.org/10.1016/j.cattod.2014.05.041.