Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Improvement of Indoor Air Quality by Applying LiNbO3 on Concrete
Corresponding Author(s) : Ranjit K. Nath
Asian Journal of Chemistry,
Vol. 29 No. 12 (2017): Vol 29 Issue 12
Abstract
Photocatalysts in ordinary building materials such as concrete create environment-friendly materials by which air pollution can be diminished. In this study, LiNbO3-coated concrete block was used to investigate pollutant removal efficiency, wherein toluene and ethylbenzene were selected as common indoor air pollutants. The effectiveness of using immobilized LiNbO3 to remove ethylbenzene and toluene from indoor air was investigated under various operational parameters. About 80 % of toluene and 82.5 % of ethylbenzene could be removed within 6 h under ultraviolet-visible light illumination using LiNbO3 as a photocatalyst in concrete. Therefore, in the near future, LiNbO3 may be used as a sustainable construction material that could contribute to indoor air purification
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhao and X. Yang, Build. Environ., 38, 645 (2003); https://doi.org/10.1016/S0360-1323(02)00212-3.
- M. Hunger, G. Husken and H.J.H. Brouwers, Cement Concr. Res., 40, 313 (2010); https://doi.org/10.1016/j.cemconres.2009.09.013.
- F. Benoit-Marquié, U. Wilkenhöner, V. Simon,A.M. Braun, E. Oliveros and M.-T. Maurette, J. Photochem. Photobiol. Chem., 132, 225 (2000); https://doi.org/10.1016/S1010-6030(00)00196-9.
- P. Blondeau, V. Iordache, O. Poupard, D. Genin and F. Allard, Indoor Air, 15, 2 (2005); https://doi.org/10.1111/j.1600-0668.2004.00263.x.
- B.E. Butterworth, Regul. Toxicol. Pharmacol., 45, 9 (2006); https://doi.org/10.1016/j.yrtph.2006.01.011.
- R.M. Hinojosa, S. Arriaga, T.L.A. Diaz and G.V. Rodríguez, Chem. Eng. J., 224, 106 (2013).
- D. Norback, E. Bjornsson, C. Janson, J. Widstrom and G. Boman, Occup. Environ. Med., 52, 388 (1995); https://doi.org/10.1136/oem.52.6.388.
- L.-A. Galeano, M.Á. Vicente and A. Gil, Catal. Rev., Sci. Eng., 56, 239 (2014); https://doi.org/10.1080/01614940.2014.904182.
- B. Zielinska and A.W. Morawski, Appl. Catal. B, 55, 221 (2005); https://doi.org/10.1016/j.apcatb.2004.08.015.
- A.P. Jones, Atmos. Environ., 33, 4535 (1999); https://doi.org/10.1016/S1352-2310(99)00272-1.
- M. Stock and S. Dunn,IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1988 (2011); https://doi.org/10.1109/TUFFC.2011.2042.
- G. Clausen, O. Alm and P.O. Fanger, 9th International Conference on Indoor Air Quality and Climate, June 30 - July 5 Monterey, California, vol. 1, p. 338 (2002).
- R.K. Nath, M.F.M. Zain,A.A.H. Kadhum and A.B.M.A. Kaish, Constr. Build. Mater., 54, 348 (2014); https://doi.org/10.1016/j.conbuildmat.2013.12.072.
- M. Hinojosa-Reyes, V. Rodríguez-González and S. Arriaga, J. Hazard. Mater., 209-210, 365 (2012); https://doi.org/10.1016/j.jhazmat.2012.01.035.
- H.K. Dong, H.C. Dong, S.Y. Myoung and W.K. Kwang, J. Adhes. Sci. Technol., 27, 5 (2013).
- G.L. Guerrini, Constr. Build. Mater., 27, 165 (2012); https://doi.org/10.1016/j.conbuildmat.2011.07.065.
- M. Safari, M. Rostami, M. Alizadeh, A. Alizadehbirjandi, S.A. Nakhli and R. Aminzadeh, Iran. J. Environ. Health Sci. Eng., 12, 1 (2014); https://doi.org/10.1186/2052-336X-12-1.
- C. Akly, P.A. Chadik and D.W. Mazyck, Appl. Catal. B, 99, 329 (2010); https://doi.org/10.1016/j.apcatb.2010.07.002.
- Y. Jiang, P. Zhang, Z. Liu and F. Xu, Mater. Chem. Phys., 99, 498 (2006); https://doi.org/10.1016/j.matchemphys.2005.11.036.
- K.P. Kuhn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.-G. Sonntag and L. Erdinger, Chemosphere, 53, 71 (2003); https://doi.org/10.1016/S0045-6535(03)00362-X.
- R.K. Nath, M.F.M. Zain and A.A.H. Kadhum, Sci. World J., Article ID 686497 (2013). https://doi.org/10.1155/2013/686497.
- L. Laokiat, P. Khemthong, N. Grisdanurak, P. Sreearunothai, W. Klysubun and W. Pattanasiriwisawa, Korean J. Chem. Eng., 29, 377 (2012); https://doi.org/10.1007/s11814-011-0179-1.
- H. Chen,A. Namdeo and M. Bell, Environ. Model. Softw., 23, 282 (2008); https://doi.org/10.1016/j.envsoft.2007.04.006.
- A. Folli, U.H. Jakobsen, G.L. Guerrini, D.E. Macphee and B. Rhodamine, J. Adv. Oxid. Technol., 12, 126 (2009); https://doi.org/10.1515/jaots-2009-0116.
- L. Zou, Y. Luo, M. Hooper and E. Hu, Chem. Eng. Process., 45, 959 (2006); https://doi.org/10.1016/j.cep.2006.01.014.
- Q.L. Yu and H.J.H. Brouwers, Appl. Catal. B, 92, 454 (2009); https://doi.org/10.1016/j.apcatb.2009.09.004.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Photochem. Rev., 1, 1 (2000); https://doi.org/10.1016/S1389-5567(00)00002-2.
- G. Husken, M. Hunger, H. Brouwers, P. Baglioni and L. Cassar, Build. Environ., 44, 2463 (2009); https://doi.org/10.1016/j.buildenv.2009.04.010.
- A.Z. Simoes, A.H.M. Gonza’lez, A.A. Cavalheiro, M.A. Zaghete, B.D. Stojanovic and J.A. Varela, Ceram. Int., 28, 265 (2002); https://doi.org/10.1016/S0272-8842(01)00089-X.
- W.C. Yang, B.J. Rodriguez, A. Gruverman and R.J. Nemanich, Appl. Phys. Lett., 85, 2316 (2004); https://doi.org/10.1063/1.1790604.
- M. Stock and S. Dunn, Ferroelectrics, 419, 9 (2011); https://doi.org/10.1080/00150193.2011.594399.
- A. Fujishima, X.T. Zhang and D.A. Tryk, Surf. Sci. Rep., 63, 515 (2008); https://doi.org/10.1016/j.surfrep.2008.10.001.
- C.J. Yu, J. Yu, W. Ho and J. Zhao, J. Photochem. Photobiol. Chem., 148, 331 (2002); https://doi.org/10.1016/S1010-6030(02)00060-6
References
J. Zhao and X. Yang, Build. Environ., 38, 645 (2003); https://doi.org/10.1016/S0360-1323(02)00212-3.
M. Hunger, G. Husken and H.J.H. Brouwers, Cement Concr. Res., 40, 313 (2010); https://doi.org/10.1016/j.cemconres.2009.09.013.
F. Benoit-Marquié, U. Wilkenhöner, V. Simon,A.M. Braun, E. Oliveros and M.-T. Maurette, J. Photochem. Photobiol. Chem., 132, 225 (2000); https://doi.org/10.1016/S1010-6030(00)00196-9.
P. Blondeau, V. Iordache, O. Poupard, D. Genin and F. Allard, Indoor Air, 15, 2 (2005); https://doi.org/10.1111/j.1600-0668.2004.00263.x.
B.E. Butterworth, Regul. Toxicol. Pharmacol., 45, 9 (2006); https://doi.org/10.1016/j.yrtph.2006.01.011.
R.M. Hinojosa, S. Arriaga, T.L.A. Diaz and G.V. Rodríguez, Chem. Eng. J., 224, 106 (2013).
D. Norback, E. Bjornsson, C. Janson, J. Widstrom and G. Boman, Occup. Environ. Med., 52, 388 (1995); https://doi.org/10.1136/oem.52.6.388.
L.-A. Galeano, M.Á. Vicente and A. Gil, Catal. Rev., Sci. Eng., 56, 239 (2014); https://doi.org/10.1080/01614940.2014.904182.
B. Zielinska and A.W. Morawski, Appl. Catal. B, 55, 221 (2005); https://doi.org/10.1016/j.apcatb.2004.08.015.
A.P. Jones, Atmos. Environ., 33, 4535 (1999); https://doi.org/10.1016/S1352-2310(99)00272-1.
M. Stock and S. Dunn,IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1988 (2011); https://doi.org/10.1109/TUFFC.2011.2042.
G. Clausen, O. Alm and P.O. Fanger, 9th International Conference on Indoor Air Quality and Climate, June 30 - July 5 Monterey, California, vol. 1, p. 338 (2002).
R.K. Nath, M.F.M. Zain,A.A.H. Kadhum and A.B.M.A. Kaish, Constr. Build. Mater., 54, 348 (2014); https://doi.org/10.1016/j.conbuildmat.2013.12.072.
M. Hinojosa-Reyes, V. Rodríguez-González and S. Arriaga, J. Hazard. Mater., 209-210, 365 (2012); https://doi.org/10.1016/j.jhazmat.2012.01.035.
H.K. Dong, H.C. Dong, S.Y. Myoung and W.K. Kwang, J. Adhes. Sci. Technol., 27, 5 (2013).
G.L. Guerrini, Constr. Build. Mater., 27, 165 (2012); https://doi.org/10.1016/j.conbuildmat.2011.07.065.
M. Safari, M. Rostami, M. Alizadeh, A. Alizadehbirjandi, S.A. Nakhli and R. Aminzadeh, Iran. J. Environ. Health Sci. Eng., 12, 1 (2014); https://doi.org/10.1186/2052-336X-12-1.
C. Akly, P.A. Chadik and D.W. Mazyck, Appl. Catal. B, 99, 329 (2010); https://doi.org/10.1016/j.apcatb.2010.07.002.
Y. Jiang, P. Zhang, Z. Liu and F. Xu, Mater. Chem. Phys., 99, 498 (2006); https://doi.org/10.1016/j.matchemphys.2005.11.036.
K.P. Kuhn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.-G. Sonntag and L. Erdinger, Chemosphere, 53, 71 (2003); https://doi.org/10.1016/S0045-6535(03)00362-X.
R.K. Nath, M.F.M. Zain and A.A.H. Kadhum, Sci. World J., Article ID 686497 (2013). https://doi.org/10.1155/2013/686497.
L. Laokiat, P. Khemthong, N. Grisdanurak, P. Sreearunothai, W. Klysubun and W. Pattanasiriwisawa, Korean J. Chem. Eng., 29, 377 (2012); https://doi.org/10.1007/s11814-011-0179-1.
H. Chen,A. Namdeo and M. Bell, Environ. Model. Softw., 23, 282 (2008); https://doi.org/10.1016/j.envsoft.2007.04.006.
A. Folli, U.H. Jakobsen, G.L. Guerrini, D.E. Macphee and B. Rhodamine, J. Adv. Oxid. Technol., 12, 126 (2009); https://doi.org/10.1515/jaots-2009-0116.
L. Zou, Y. Luo, M. Hooper and E. Hu, Chem. Eng. Process., 45, 959 (2006); https://doi.org/10.1016/j.cep.2006.01.014.
Q.L. Yu and H.J.H. Brouwers, Appl. Catal. B, 92, 454 (2009); https://doi.org/10.1016/j.apcatb.2009.09.004.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Photochem. Rev., 1, 1 (2000); https://doi.org/10.1016/S1389-5567(00)00002-2.
G. Husken, M. Hunger, H. Brouwers, P. Baglioni and L. Cassar, Build. Environ., 44, 2463 (2009); https://doi.org/10.1016/j.buildenv.2009.04.010.
A.Z. Simoes, A.H.M. Gonza’lez, A.A. Cavalheiro, M.A. Zaghete, B.D. Stojanovic and J.A. Varela, Ceram. Int., 28, 265 (2002); https://doi.org/10.1016/S0272-8842(01)00089-X.
W.C. Yang, B.J. Rodriguez, A. Gruverman and R.J. Nemanich, Appl. Phys. Lett., 85, 2316 (2004); https://doi.org/10.1063/1.1790604.
M. Stock and S. Dunn, Ferroelectrics, 419, 9 (2011); https://doi.org/10.1080/00150193.2011.594399.
A. Fujishima, X.T. Zhang and D.A. Tryk, Surf. Sci. Rep., 63, 515 (2008); https://doi.org/10.1016/j.surfrep.2008.10.001.
C.J. Yu, J. Yu, W. Ho and J. Zhao, J. Photochem. Photobiol. Chem., 148, 331 (2002); https://doi.org/10.1016/S1010-6030(02)00060-6