Copyright (c) 2020 Asian Journal of Chemistry -unify
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of H2O2 on Corrossion Process of Low Alloy Steel in 3.5 wt. %NaCl Solution
Corresponding Author(s) : Huixia Zhang
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Corrosion process of low-alloy steel in 3.5 wt. % NaCl solution containing H2O2 is studied by cyclic voltammetry curves, cathodic polarization curves, electrochemical impedance spectroscopy and surface characterization analysis. Cyclic voltammetry curves show the addition of H2O2 can make the corrosion current of steel increase and corrosion products perform similarly. Cathodic polarization curves confirm that corrosion process is controlled by oxygen diffusion process. Hydrogen peroxide can clearly accelerate the oxygen reduction of low-alloy steel mainly due to the increase of oxygen from decomposition. The electrochemical impedance spectroscopy measurements indicate that the corrosion resistance declines sharply. Surface characterization demonstrates that H2O2 can accelerate the corrosion rate, since the pit depth increases by two times in contrast with pure 3.5 wt. % NaCl solutions. These results suggest that the corrosion process of low-alloy steel is similar in 3.5 wt. % NaCl solution with and without H2O2, meanwhile the corrosion rate of steels can be efficiently accelerated by adding H2O2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.X. Jin, Y.N. Luo and S.Z. Song, J. Chinese Soc. Corros. Prot., 28, 337 (2008).
- H. Zhang, H.B. Qi, C.W. Du and X.G. Li, Acta Metall. Sin., 45, 338 (2009) (in Chinese).
- A. Nishikata, Y. Yamashita, H. Katayama, T. Tsuru, Usami, K. Tanabe and H. Mabuchi, Corros. Sci., 37, 2059 (1995); doi:10.1016/0010-938X(95)00104-R.
- A.P. Yadav, A. Nishikata and T. Tsuru, Corros. Sci., 46, 169 (2004); doi:10.1016/S0010-938X(03)00130-6.
- Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung and H.C. Shih, Corros. Sci., 47, 1001 (2005); doi:10.1016/j.corsci.2004.04.009.
- Y.Y. Chen, H.J. Tzeng, L.I. Wei and H.C. Shih, Mater. Sci. Eng. A, 398, 47 (2005); doi:10.1016/j.msea.2005.02.064.
- T. Nishimura, H. Katayama, K. Noda and T. Kodama, Corros. Sci., 42, 1611 (2000); doi:10.1016/S0010-938X(00)00018-4.
- L. Hao, S. Zhang, J. Dong and W. Ke, Corros. Sci., 58, 175 (2012); doi:10.1016/j.corsci.2012.01.017.
- H.X. Zhang, X. Qi, H.B. Zeng and C.-L. Deng, Corros. Sci. Prot. Technol., 22, 192 (2010).
- C. Yang, H.X. Zhang, W.M. Guo and Y.B. Fu, J. Chinese Soc. Corros. Prot., 33, 205 (2013).
- S. Uchida, E. Ibe, K. Nakata, M. Fuse, K. Ohsumi and Y. Takashima, Nucl. Technol., 110, 250 (1995).
References
W.X. Jin, Y.N. Luo and S.Z. Song, J. Chinese Soc. Corros. Prot., 28, 337 (2008).
H. Zhang, H.B. Qi, C.W. Du and X.G. Li, Acta Metall. Sin., 45, 338 (2009) (in Chinese).
A. Nishikata, Y. Yamashita, H. Katayama, T. Tsuru, Usami, K. Tanabe and H. Mabuchi, Corros. Sci., 37, 2059 (1995); doi:10.1016/0010-938X(95)00104-R.
A.P. Yadav, A. Nishikata and T. Tsuru, Corros. Sci., 46, 169 (2004); doi:10.1016/S0010-938X(03)00130-6.
Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung and H.C. Shih, Corros. Sci., 47, 1001 (2005); doi:10.1016/j.corsci.2004.04.009.
Y.Y. Chen, H.J. Tzeng, L.I. Wei and H.C. Shih, Mater. Sci. Eng. A, 398, 47 (2005); doi:10.1016/j.msea.2005.02.064.
T. Nishimura, H. Katayama, K. Noda and T. Kodama, Corros. Sci., 42, 1611 (2000); doi:10.1016/S0010-938X(00)00018-4.
L. Hao, S. Zhang, J. Dong and W. Ke, Corros. Sci., 58, 175 (2012); doi:10.1016/j.corsci.2012.01.017.
H.X. Zhang, X. Qi, H.B. Zeng and C.-L. Deng, Corros. Sci. Prot. Technol., 22, 192 (2010).
C. Yang, H.X. Zhang, W.M. Guo and Y.B. Fu, J. Chinese Soc. Corros. Prot., 33, 205 (2013).
S. Uchida, E. Ibe, K. Nakata, M. Fuse, K. Ohsumi and Y. Takashima, Nucl. Technol., 110, 250 (1995).