Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization of ZnO and Al2O3 Nanoparticles and Its Application in Chromium Remediation Studies
Corresponding Author(s) : Badal Kumar Mandal
Asian Journal of Chemistry,
Vol. 29 No. 11 (2017): Vol 29 Issue 11
Abstract
Present work describes the synthesis of zinc oxide and aluminum oxide nanoparticles by simple chemical method. The synthesized nanoparticles were characterized using XRD, SEM and TEM. Both ZnO and Al2O3 nanoparticles were used in the remediation of chromium from aqueous solution. Various parameters such as pH, volume (mL)/mass (g) (v/m) ratio, contact time and initial concentration of chromium were evaluated to optimize the removal efficiency of chromium. The obtained results present that both the nanoparticles acted as potential adsorbents in removing chromium from aqueous solution, maximum removal was observed at pH 5. The contact time required to achieve the equilibrium was 60 min for ZnO and 95 min for Al2O3. Under optimum process parameters, the removal efficacy was maximum and reusability of the synthesized nanoparticles was also checked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Wang, J. Song, J. Liu and Z.L. Wang, Science, 316, 102 (2007); https://doi.org/10.1126/science.1139366.
- C.Y. Lee, S.Y. Li, P. Lin and T.-Y. Tseng, IEEE Trans. NanoTechnol., 5, 216 (2006); https://doi.org/10.1109/TNANO.2006.874049.
- Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, Appl. Phys. Lett., 84, 3654 (2004); https://doi.org/10.1063/1.1738932.
- Z.L. Wang, Mater. Today, 7, 26 (2004); https://doi.org/10.1016/S1369-7021(04)00286-X.
- C.L. Wu, L. Chang, H.G. Chen, C.W. Lin, T.F. Chang, Y.C. Chao and J.K. Yan, Thin Solid Films, 498, 137 (2006); https://doi.org/10.1016/j.tsf.2005.07.096.
- S. Music, A. Saric and S. Popovic, Ceram. Int., 36, 1117 (2010); https://doi.org/10.1016/j.ceramint.2009.12.008.
- S. Rani, P. Suri, P.K. Shishodia and R.M. Mehra, Sol. Energy Mater., 92, 1639 (2008); https://doi.org/10.1016/j.solmat.2008.07.015.
- J. Agrell, G. Germani, S.G. Jaras and M. Boutonnet, Appl. Catal. A, 242, 233 (2003); https://doi.org/10.1016/S0926-860X(02)00517-3.
- C.D. Palmer and R.W. Puls, EPA Environmental Assessment Source Book, EPA/540/S-94/505, pp. 57-72 (1994).
- N. Savage and M.S. Diallo, J. Nanopart. Res., 7, 331 (2005); https://doi.org/10.1007/s11051-005-7523-5.
References
X. Wang, J. Song, J. Liu and Z.L. Wang, Science, 316, 102 (2007); https://doi.org/10.1126/science.1139366.
C.Y. Lee, S.Y. Li, P. Lin and T.-Y. Tseng, IEEE Trans. NanoTechnol., 5, 216 (2006); https://doi.org/10.1109/TNANO.2006.874049.
Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, Appl. Phys. Lett., 84, 3654 (2004); https://doi.org/10.1063/1.1738932.
Z.L. Wang, Mater. Today, 7, 26 (2004); https://doi.org/10.1016/S1369-7021(04)00286-X.
C.L. Wu, L. Chang, H.G. Chen, C.W. Lin, T.F. Chang, Y.C. Chao and J.K. Yan, Thin Solid Films, 498, 137 (2006); https://doi.org/10.1016/j.tsf.2005.07.096.
S. Music, A. Saric and S. Popovic, Ceram. Int., 36, 1117 (2010); https://doi.org/10.1016/j.ceramint.2009.12.008.
S. Rani, P. Suri, P.K. Shishodia and R.M. Mehra, Sol. Energy Mater., 92, 1639 (2008); https://doi.org/10.1016/j.solmat.2008.07.015.
J. Agrell, G. Germani, S.G. Jaras and M. Boutonnet, Appl. Catal. A, 242, 233 (2003); https://doi.org/10.1016/S0926-860X(02)00517-3.
C.D. Palmer and R.W. Puls, EPA Environmental Assessment Source Book, EPA/540/S-94/505, pp. 57-72 (1994).
N. Savage and M.S. Diallo, J. Nanopart. Res., 7, 331 (2005); https://doi.org/10.1007/s11051-005-7523-5.