Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural and Optical Characterization of ZnO-TiO2-SiO2 Nanocomposites Synthesized by Sol-Gel Technique
Corresponding Author(s) : Harish Kumar
Asian Journal of Chemistry,
Vol. 29 No. 11 (2017): Vol 29 Issue 11
Abstract
ZnO-TiO2-SiO2 nanocomposites were synthesized by sol-gel technique. Nanocomposites were annealed at 400 °C. The structural and optical characterization was performed by XRD, TEM, FTIR and UV-visible spectroscopic techniques. Average particle size of ZnO-TiO2-SiO2 nanocomposites was found to be 34.23 nm using XRD technique. The energy band gap of ZnO, TiO2 and ZnO-TiO2-SiO2 were found to be 3.4, 3.6 and 3.5 eV, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lu, Z. Ye, L. Wang, J. Huang and B. Zhao, Mater. Sci. Semicond. Process., 5, 491 (2002); https://doi.org/10.1016/S1369-8001(02)00114-2.
- W. Shen, Y. Zhao and C. Zhang, Thin Solid Films, 483, 382 (2005); https://doi.org/10.1016/j.tsf.2005.01.015.
- D. Djouadi, A. Chelouche, A. Aksas and M. Sebais, Phys. Procedia, 2, 701 (2009); https://doi.org/10.1016/j.phpro.2009.11.013.
- Z.W. Pan, Z.R. Dai and Z.L. Wang, Science, 291, 1947 (2001); https://doi.org/10.1126/science.1058120.
- M.S. Arnold, P. Avouris, Z.W. Pan and Z.L. Wang, J. Phys. Chem. B, 107, 659 (2003); https://doi.org/10.1021/jp0271054.
- J. Sawai, J. Microbiol. Methods, 54, 177 (2003); https://doi.org/10.1016/S0167-7012(03)00037-X.
- M. Xiong, G. Gu, B. You and L. Wu, J. Appl. Polym. Sci., 90, 1923 (2003); https://doi.org/10.1002/app.12869.
- M.A. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater., 133, 226 (2006); https://doi.org/10.1016/j.jhazmat.2005.10.022.
- E. Tang, G. Cheng, X. Ma, X. Pang and Q. Zhao, Appl. Surf. Sci., 252, 5227 (2006); https://doi.org/10.1016/j.apsusc.2005.08.004.
- E. Tang, G. Cheng, X. Ma and X. Pang, Powder Technol., 161, 209 (2006); https://doi.org/10.1016/j.powtec.2005.10.007.
- G. Broasca, G. Borcia, N. Dumitrascu and N. Vrinceanu, Appl. Surf. Sci., 279, 272 (2013); https://doi.org/10.1016/j.apsusc.2013.04.084.
- M. Montazer and M. Maali Amiri, J. Phys. Chem. B, 118, 1453 (2014); https://doi.org/10.1021/jp408532r.
- Priyanka and V.C. Srivastava, Ind. Eng. Chem. Res., 52, 17790 (2013); https://doi.org/10.1021/ie401973r.
- M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi and M. Rajarajan, J. Sol-Gel Sci. Technol., 65, 301 (2013); https://doi.org/10.1007/s10971-012-2936-y.
- A. Nazari, M. Montazer, F. Afzali and A. Sheibani, Clean Technol. Environ. Policy, 16, 1081 (2014); https://doi.org/10.1007/s10098-013-0709-0.
- D. Shao, D. Gao, Q. Wei, H. Zhu, L. Tao and M. Ge, Appl. Surf. Sci., 257, 1306 (2010); https://doi.org/10.1016/j.apsusc.2010.08.056.
- M.A. Tavanaie, Chem. Eng. Technol., 36, 1823 (2013); https://doi.org/10.1002/ceat.201300146.
- R. Wahab, A. Mishra, S.I. Yun, Y.S. Kim and H.S. Shin, Appl. Microbiol. Biotechnol., 87, 1917 (2010); https://doi.org/10.1007/s00253-010-2692-2.
References
J. Lu, Z. Ye, L. Wang, J. Huang and B. Zhao, Mater. Sci. Semicond. Process., 5, 491 (2002); https://doi.org/10.1016/S1369-8001(02)00114-2.
W. Shen, Y. Zhao and C. Zhang, Thin Solid Films, 483, 382 (2005); https://doi.org/10.1016/j.tsf.2005.01.015.
D. Djouadi, A. Chelouche, A. Aksas and M. Sebais, Phys. Procedia, 2, 701 (2009); https://doi.org/10.1016/j.phpro.2009.11.013.
Z.W. Pan, Z.R. Dai and Z.L. Wang, Science, 291, 1947 (2001); https://doi.org/10.1126/science.1058120.
M.S. Arnold, P. Avouris, Z.W. Pan and Z.L. Wang, J. Phys. Chem. B, 107, 659 (2003); https://doi.org/10.1021/jp0271054.
J. Sawai, J. Microbiol. Methods, 54, 177 (2003); https://doi.org/10.1016/S0167-7012(03)00037-X.
M. Xiong, G. Gu, B. You and L. Wu, J. Appl. Polym. Sci., 90, 1923 (2003); https://doi.org/10.1002/app.12869.
M.A. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater., 133, 226 (2006); https://doi.org/10.1016/j.jhazmat.2005.10.022.
E. Tang, G. Cheng, X. Ma, X. Pang and Q. Zhao, Appl. Surf. Sci., 252, 5227 (2006); https://doi.org/10.1016/j.apsusc.2005.08.004.
E. Tang, G. Cheng, X. Ma and X. Pang, Powder Technol., 161, 209 (2006); https://doi.org/10.1016/j.powtec.2005.10.007.
G. Broasca, G. Borcia, N. Dumitrascu and N. Vrinceanu, Appl. Surf. Sci., 279, 272 (2013); https://doi.org/10.1016/j.apsusc.2013.04.084.
M. Montazer and M. Maali Amiri, J. Phys. Chem. B, 118, 1453 (2014); https://doi.org/10.1021/jp408532r.
Priyanka and V.C. Srivastava, Ind. Eng. Chem. Res., 52, 17790 (2013); https://doi.org/10.1021/ie401973r.
M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi and M. Rajarajan, J. Sol-Gel Sci. Technol., 65, 301 (2013); https://doi.org/10.1007/s10971-012-2936-y.
A. Nazari, M. Montazer, F. Afzali and A. Sheibani, Clean Technol. Environ. Policy, 16, 1081 (2014); https://doi.org/10.1007/s10098-013-0709-0.
D. Shao, D. Gao, Q. Wei, H. Zhu, L. Tao and M. Ge, Appl. Surf. Sci., 257, 1306 (2010); https://doi.org/10.1016/j.apsusc.2010.08.056.
M.A. Tavanaie, Chem. Eng. Technol., 36, 1823 (2013); https://doi.org/10.1002/ceat.201300146.
R. Wahab, A. Mishra, S.I. Yun, Y.S. Kim and H.S. Shin, Appl. Microbiol. Biotechnol., 87, 1917 (2010); https://doi.org/10.1007/s00253-010-2692-2.